UCRL-53921 th

An Investigation of the
Usefulness of Earley’s
Algorithm in a General
Context-Free Recognizer

Cathleen M. Benedetti
(M.S. Thesis)

June 1989

DISCLAIMER

This documeni was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy

Available to DOE and DOE contraciors trom the
Office of Scientific and Technical Information
P.(. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, F 'S 626-8401

Available to the public from the
National Technical Information Service
L.S. Department of Commerce
5285 l'ort Royal Rd.,
Springfield. VA 22161

Price Page
Code Range
A01 Microfiche

Papercopy Prices

A02 001-050
A03 051-100
A04 101-200
A05 201-300
A06 301-400
A07 401-500
A0S 501-600

A09 601

UCRL-53921 th
Distribution Category UC-705

An Investigation of the
Usefulness of Earley’s
Algorithm in a General
Context-Free Recognizer

Cathleen M. Benedetti
(M.S. Thesis)

Manuscript date: June 1989

LAWRENCE LIVERMORE NATIONAL LABORATORY

University of California « Livermore, California « 94551

Available to DOE and DOE contractors from the Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831 Prices available from (615) 576-8601, FTS 626-8401

Available to the public from the National Technical Information Service, U.S. Department of Commerce
5285 Port Royal Rd., Springfield, VA 22161 o ¢ (Microfiche AD1)

An Investigation of the Usefulness of Earley’s Algorithm
in a General Context-Free Recognizer

By
Cathleen M. Benedetti
THESIS

Submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE
in
Computer Science

in the

GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:
M om m %—W@(-

T RLTF Dles
L

Committee in Charge

Abstract

This thesis explores the potential applications of a general context-free
recognizer implemented using Earley's Algorithm. First, several potential
applications are identified. The recognizer is implemented, and tested using
several grammars and input strings representative of these applications.
The results of these tests are then examined to determine whether Earley's
Algorithm can be successfully used in a general context-free recognizer.

TABLE OF CONTENTS

1. OVERVIEW.....or et rseesetsec e cs oo 1
2. EARLEY'S ALGORITHM.......ccooeerereecerrimrncrecnieccmreeicinnenns 4
3. APPLICATIONS OF EARLEY'S ALGORITHM............cceceean. 7
4. OBJECT-ORIENTED LANGUAGES..........ccooovirirciviiiiiinis 10
5. BIFFEL et ere st 11
6. IMPLEMENTATION. ..ottt 12
7. TEST CASES......ooo et see st cs et 19
8. RESULTS....cooere ettt ettt 21
9. DISCUSSION.......ooeiererrirereceemereeese et et eesseee s 34
REFERENGES ...ttt ceereents et 36
APPENDIX A: Earley's AlgOrithm..........coevecricrncneninencncrereecnnn, 38
APPENDIX B: The RECOGNIZE ... 40
APPENDIX C: Input Grammars...........ceceuerereeeneennencuecieercrcenercenenns 57
APPENDIX D: INpUt SEHNGS..c.cvvveieeeierieerissicesisseeseene e 85

QVERVIEW

Earley's algorithm is a general context-free recognition algorithm proposed by Jay
Earley in 1968 [9]. Given any context-free grammar and an input string, the algorithm
determines whether the input string is a member of the language described by the grammar.
Since the introduction of Earley's algorithm into the literature, little has been done to test
Earley's original conclusions about the complexities of the algorithm. The complexity of
Earley's algorithm is determined by the total number of states (see Appendix A) which can
be created when the aigorithm is given a particular grammar and an input string. The
complexities which Earley gives in [9] are given in terms of n, the length of the input string.
Earley's algorithm is known to be of complexity O(n3) for arbitrary context-free grammars,
and O(nz) for unambiguous context-free grammars. Its complexity is O(n) for a class of
grammars that includes LR(k)! grammars [9]. The algorithm also has the advantage that it
does not require the input grammar to be in any special form.

While Earley's algorithm has been modified for use in many applications, his original
conclusion that the algorithm has complexity O(n) - O(n2) for unambiguous context-free
grammars has not been documented in the literature. Furthermore, these general orders
alone give little indication of whether the algorithm is of any practical use. To determine this,
it i1s necessary to implement the algorithm and record its execution time for several different
grammars and input strings. These grammars and input strings represent situations and
applications where it would be desirable to use a general context-free recognizer. By
observing the actual behavior of Earley's algorithm on real grammars, we can better judge
its potential to be successfully used in software applications.

The reason for this investigation is to examine the usefulness of incorporating
Earley's algorithm into a general context-free recognizer or parser. Of particular interest is

1 LR(k) grammars are those which are recognized by parsers that use LR(k) parsing algorithms. Aho, Sethi, &
Uliman [2] explain that “the technique is called LR(k} parsing; the ‘L' is for left-to right scanning of the input,
the R’ for constructing a rightmaost derivation in reverse, and the k for the number of input symbols of lookahead
that are used in making parsing decisions. When (k) is omitted, k is assumed to be 1 (p. 215). A complete
description of LR(k) parsing can be found in [2].

the use of these tools in situations where an LR parser or other method cannot be used, or
where it is more desirable to use a general context-free recognizer, particularly one which is
implemented using Early's algorithm. For example, often there are some desirable non-LR(1)
constructions that could be added to a programming language that would be more natural to
use than similar constructions in LR(1) grammars. The addition of such non-LR(1)
expressions gives more flexibility and power to an LR(1) programming language, and allows
for greater ease of use. Earley's algorithm offers the hope of efficient implementations of a
recognizer, parser, and compiler-compiler for these modified programming languages. Such a
compiler-compiler allows language designers the flexibility to use general context-free
structures, rather than restrict them to smaller classes of grammars such as LR or LALR 2
grammars {2]. Tools which use Eariy's algorithm would be helpful in several other situations
and applications. These include the beginning stages of compiler development, the checking of

command files for errors, a multi-language parser, and the implementation of a variety of
programming tools.

The first part of this thesis is the construction of a general context-free recognizer
implemented with Earley's algorithm. This recognizer is used to help determine whether it is
feasible to incorporate such a recognizer into any of the previously mentioned applications.
The recognizer accepts a context-free grammar and a string as input. Using Earley's
algorithm, it determines whether or not the string is in the language described by the
context-free grammar. The recognizer is implemented in Eiffel [11], an interesting new
object-oriented programming language designed to promote the creation of reliable and
reusable software. Eiffel was chosen because it offers a unique combination of programming

language features, and, since it is relatively new, to examine how it fares as a programming
environment.

The feasibility of using such a recognizer is determined by measuring its execution
time and space requirements on existing and example grammars. These measurements are
taken using several different input strings with each grammar. In this manner we can

2 LALR grammars are those which are recognized by LALR parsers, a particular type of LR parser. The LA in
LALR stands for look-ahead.

observe how the performance of Earley's algorithm varies with the length of the input string
for a given grammar. It is also interesting to see how the performance of the recognizer
varies from grammar to grammar with the same size input string. The grammars and input
strings used in these tests are representative of situations and applications in which it would
be desireable to use a general context-free recognizer, particularly one that uses Early's
algorithm in its implementation.

These measurements can be used in several different ways. In this investigation,
they will be used to identify the constants of the complexities of Early's algorithm for
individual grammars. They will also show in what instances it is reasonable to use Earley's
algorithm in a tool which accepts general context-free grammars, as well as whether it is
practical to use that tool to expand existing programming language grammars.

EARLEY'S ALGORITHM

Earley's algorithm (see Appendix A, [9] and [10]) was chosen as part of the
implementation of the recognizer because it is a general context-free recognition algorithm
which appears to have reasonable time and space bounds for certain subsets of context-free
grammars. In particular, the promise of a time complexity of O(n) for LR(k) grammars
suggests that its use in expanding an LR(1) grammar (described below) would provide
reasonable results. Earley's algorithm has two distinct advantages over another well-known
context-free recognition algorithm, the Cocke-Younger-Kasami (CYK) algorithm (6, p. 302].
The CYK algorithm has a time complexity of O(n3) for all context-free grammars. Unlike
the CYK algorithm, which requires its input grammars to be in Chomsky normal form3,
Earley's algorithm does not require its input grammars to be in any special form. Earley's
algorithm is also known to have been successfully adapted for use in a commercially
available syntax-directed editor.

Earley's algorithm has been modified for use in several applications and algorithms.
Christopher, Hatcher & Kukuk [7] used Earley's algorithm to produce optimized code from
intermediate code in two Graham-Glanville style code generators. Earley's algorithm was
used to produce all possible parses. Values were assigned to the productions, and then the
minimum cost parse was chosen. They also discuss the use of Earley's Algorithm in an
experimental C code generator. Vol'dman [18] describes an algorithm for context-sensitive
grammars which he describes as a "generalization of Earley's algorithm" (p. 302). In [5],
Bouckaert, Pirotte and Snelling introduce a set of algorithms of which they claim Earley's
algorithm to be a member. Some of these algorithms appear to do better than Earley's
algorithm, but not in all instances. The interesting point which is made in [5] is that, while
their new parsing algorithms lack efficiency when generaily compared to parsers which
restrict their input grammars, they seem to perform “fairly well on LL or LR grammars,
while still being able to parse any CF-G" (p. 16). Chiang and Fu [6] modified Earley's
Algorithm to a parallel recognition algorithm for use in VLS| implementations, restricting the

3 A grammar written in Chomsky normal form contains only production rules of the form A ::=aor A :;= BC. For
every context-free grammar, there is such an equivalent grammar.

input grammars to be A-free. Zaitman and Kholodenko [19] also modified the
algorithm for use in a multilanguage programming system.

This thesis attempts to judge the usefulness of Earley's algorithm. In doing so, the
first question which must be answered is the one posed by Aho, Hopcroft & Ullmann (1, p. 2].
"How should we judge the goodness of an algorithm?" Earley characterizes those grammars
for which his algorithm can recognize input strings in O(n), 0(n2), and O(n3) time [9]. There
are those computer scientists who will argue that these complexities are all the information
needed to determine whether an algorithm is "good"” or not. Realistically, this is not the case.
In most instances, including this one, more information is needed before it can be determined
whether the Earley's algorithm is practical, efficient, and useful.

In determining the complexity of his algorithm, Earley uses some of the
characteristics of the input grammar [9]). For a given grammar, there are a maximum
number of states which can be created based solely on the length of the input string and the
characteristics of the grammar. This is the worst case, and it provides a theroretical upper
bounds on the complexity of the algorithm in a particular instance. These characteristics
include the number of production rules, the maximum number of symbols in a production rule,
and the number of terminals in the grammar. Since each of these quantities is constant with
respect to the length of the input string, they are not evident when the complexity is
discussed solely in terms of n. However, these "constants” are determined by another input
to the algorithm, the grammar, and they have the potential to greatly effect the execution
time of the algorithm. One of the goals of this investigation is to determine how severly the
execution time of the recognizer can be affected by the grammar.

In determining whether a recognizer which uses Earley’s algorithm is of any practical
use, three steps must be taken:

1) Identify potential applications.
2) Test Earley's algorithm on examples of these potential applications.
3) Evaluate the results of these tests.

In evaluating the results for each particular application, the experimental constants
associated with the complexity of Earley's algorithm for individual grammars will be
identified. Subjective judgements based on the execution times of the recognizer will then be
made to determine whether Earley's algorithm can be successfully used in a general
context-free recognizer in any of the applications posed in this thesis.

AP I ' H

This section describes the applications in which it would be desirable to use a general
context-free recognizer, particularly a recognizer which uses Earley's algorithm in its
implementation. These applications fall into two categories. The first group of applications
are those which involve the use of a programming language grammar. These are large

applications such as a compiler-compiler and sytax-directed editor. The second group
consists of smaller applications and software tools.

There are many compiler-compilers available to assist compiler writers with
implementation. Most of the efficient compiler-compilers use algorithms which place
restrictions on the type of input grammar that the compiler-compiler can accept. Commonly,
the systems use LR, LALR and LL# parsing algorithms. Complete descriptions of these
algorithms are contained in Aho, Sethi, and Ullman [2]. Examples of such systems include the
LR System [15] used at Lawrence Livermore National Laboratory (LLNL). !t uses an LR
algorithm [2], and therefore requires input grammars to be LR. Likewise, the Unix utility
Yacc [16] uses a LALR algorithm, and requires its input grammars to be LALR. These and

other such systems are widely available and used extensively to assist in the construction of
efficient compilers.

By forcing a compiler writer to conform their grammar to a specific subset of
context-free grammars, a compiler-compiler's efficiency and time complexity are greatly
improved. The reason for this is that instead of having to provide for all context-free
grammars, it only needs to know how to process a particular subset. If the grammar being
processed fails to meet certain criteria, it is rejected, and the compiler writer must modify
the grammar until an acceptable alternative is found. While this process may be frustrating
for inexperienced grammar writers, in most instances the ability of the compiler-compiler to
accept only one type of grammar is more than sufficient. Insisting that the grammar is in a
particular form generally increases the efficiency and lowers the time complexity of the

4 As with LR parsing algorithms, Aho, Sethi, & Ullman [2] explain that the first 'L’ in LL "stands for scanning the
input from left to right, the second 'L’ for produccing a leftmost derivation™ (p. 191).

algorithm used by the compiler-compiler writer. However, there are situations when a
compiler writer might want a more flexible solution.

This investigation was originally prompted by the desire to allow some non-LR(1)
constructs into an existing LR(1) programming language grammar. When designing or
expanding a programming language grammar, it is necessary to keep the users in mind. lItis
frequently the case that the construct which a language designer wishes to offer to users
does not fit easily into an existing LR(1) grammar. After alterations are made to make the
construct LR(1), it is often the user who ultimately pays the price. The new construct given
to the user is less natural and more complicated to use and understand than the construct
that the language designer originally conceived. This leaves the language designer wishing for
a compiler-compiler that would excuse slight deviations from an LR(1) grammar.

There are other instances when a user would prefer a general context-free
recognizer or parser. In the early stages of compiler development, when a grammar is
undergoing constant and considerable change, it would be helpful to have a general
context-free system. This allows the compiler writer to concentrate on implementation
issues rather than the problems of a non-conforming grammar. A multi-language system,
such as a parser or a syntax-directed editor is an ideal place for the capabilities of a general
context-free recognizer. In these applications, it is preferable to have a system which
provide the users with as much freedom has possible.

A general context-free recognizer can also be used in smaller applications. In these
smaller applications, it would be undesirable to use an LR(1) recognizer because the users of
these tools are not necessarily programming language experts, and therefore would have
difficulty writing LR(1) grammars. These applications include a tool to check command files
for errors before leaving for the night. This would help avoid the frustrating possiblity of
returning in the morning only to discover that a program had not run because of a
typographical error. In this situation, it is possible to use a searching algorithm. However, it
would be more desireable to use a general context-free recognizer for two reasons. First, a
search method would only be suitable in instances where there are a very small number of
possible commands and a small amount of input. Second, when using a search method,
allowances for the many options which frequently accompany a command must be made

either in the list of commands, or in the code which processes the commands. Including these
allowances in a command list would result in a large command list not suitable for use with a
search method. It would also be much easier to include these options in a grammar, than to
write code to accommodate each one.

Finally, a general parser can be used to assist in the implemention of programming
tools. Rather than having to write the code to parse the input, a tool writer could supply a
short grammar and leave the parsing work to the parser. This would certainly simplify the
job of the tool writer.

As discussed above, it would be desirable to have a general context-free recognizer
for several reasons. In a compiler-compiler, it gives compiler writers more freedom in
language design and facilitates compiler implementation by allowing them to alter the
grammar only when the language calls for it, not when the compiler-compiler mandates it.
The recognizer provides generality for users of multi-language systems. In smaller
applications, it helps with error checking and in parsing input without requiring the expertise to
write an LR(1) grammar.

OBJECT-ORIENTED LANGUAGES

In recent years, much attention has been paid to the development and use of
object-oriented languages and programming techniques. Briefly described here are the
characteristics of object-oriented languages and how they influence programming style.

In object-oriented programming, emphasis is placed on the objects or data structures
being manipulated, rather than on the procedures which are operating on the data. As Meyer
[14] observes, "the primary design issue is not what the system does, but what objects it
does it to" (p. 63). Classes are used to define data structures and the operations which can
be performed on those structures. An object refers to a particular instantiation of a class.

The interface between the user and an object is strictly controlled. The user is only
allowed access to an object through specific operations. In this manner, the representation of
the object is hidden from the user. For example, a user who had an object of class STACK
would have access to two operations: PUSH and POP. However, the implementation details,
such as whether the stack was implemented by a linked list or an array, would not be visible.

This allows both the author and client of a class the freedom to change their code without
interferring with the other's work.

Another important feature of object-oriented programming is inheritance. Inheritance
allows one class to inherit some or all of its structure from one or more previously defined
classes. Already existing classes can be combined and extended to produce new classes.
This ability promotes application independent code and helps to eliminate the unnecessary
rewriting of modules for each new application.

The primary advantage of object-oriented programming is reusability. Modularity,
information hiding through interface control, and inheritance all contribute to create software
which can be used over and over again in entirely different applications. Classes can be

grouped and re-grouped into new classes, all of which continue to expand the resources of the
programmer.

10

|FEEL

The language chosen to implement the recognizer is Eiffel [11]. Eiffel is a recently
developed object-oriented language. It was chosen because it offers a unique combination of

programming language features, and, since it is relatively new, to see how it fares as a
programming environment.

Eiffel classes contain features. These features may be pieces of data or routines to
manipulate that data. In its current release, Eiffel supports multiple inheritance (inheritance
from more than one class), and repeated inheritance (inheritance from the same class more
than once). lIts feature redefinition and renaming capabilities add to its qualities as an

object-oriented language. More information about Eiffel can be found in {11], [12), {13}, and
(14].

The choice of an object-oriented language, and in particular Eiffel, assisted greatly in
the implementation of Earley's algorithm. In dealing with grammars, each part of the
grammar is treated as an object, and those objects combine to form the larger object of the
grammar. Representing the states and state sets of Earley's algorithm was also aided by
the choice of Eiffel as the implementation language. State information and the states
themselves could be combined in a way which made processing the states as straightforward
as possible. Further details on the objects used in the implementation of the recognizer are
contained in the next section on implementation.

Eiffel inheritance and feature redefinition cabilities were found to be of particular
usefulness. They made it simple to build new classes and rewrite some of the existing library
features to be compatible with the new classes. Overall, Eiffel is a well-organized language
that facilitates programming tasks.

11

IM ATION

This section describes the implementation of a general context-free recognizer that
uses Earley's algorithm. A brief introduction is followed by a description of the classes and
objects used in the recognizer. The two parts of the recognizer, REC1 and REC2, are then
described in detail.

The implementation of the recognizer is divided into two parts. The first part, REC1,
is responsible for reading the grammar and processing it into its run-time structure. The
structure is then stored in a file using one of Eiffel's library routines. The second part, REC2,
is responsible for retrieving the grammar and then processing the input string to determine
whether or not the string is valid. The purpose in separating the process into two parts is to
allow a grammar to be read once, then its structure stored in a file. This file may then be
retrieved repeatedly and used to process any number of input strings without having to
reread the entire grammar.

In the implementation of the recognizer, primarily two data structures, or objects, are
needed. One object is used to represent the input grammar. The second object contains the
representation of all the states and state sets of Earley's algorithm. The classes used to
describe these objects will now be explained. To distinguish between classes and features,
class names appear in uppercase type, while feature names appear in lowercase type. The
figures in this section illustrate the inheritance structure and primary features of the classes.
Appendix B contains the Eiffel code of the classes described here.

The class GRAMMAR (Figure 1) is used to represent the input grammar. Its most
important feature is r, a sorted linked list of production rules represented by the class
S_LIST (Figure 2). S_LIST inherits from the generic Eiffel library class LINKED_LIST [13).

The linked list is of class RULE (Figure 3), and is sorted by the RULE feature ths (described
below).

A RULE represents the information associated with a particular left hand side of a
production rule. Its features include:

12

13

hs: a STRING [13] representing the left hand side of a production rule
rhs: a linked list of SYMBOL_LIST (described below) representing all the

alternatives of the left hand side

fst: a SYMBOL_LIST representing the first set5 of Ihs

A SYMBOL_LIST (Figure 4) is a linked_list of STRING (an Eiffel library class), and like
S_LIST inherits from the generic Eiffel library class LINKED_LIST.

class GRAMMAR

r. S_LIST,

Figure 1
Class GRAMMAR

a N\
class RULE

Ihs: STRING;
rhs: LINKED_LIST [SYMBOL_LIST];
fst: SYMBOL_LIST;

- J

Figure 3
Class RULE

[class LINKED_LIST [RULE]]
' class S_LIST l

Figure 2
Class S_LIST

Glass LINKED_LIST [STRlNG])

I
Elass SYMBOL_LIST)

Figure 4

Class SYMBOL_LIST

S A first set is the set of all terminals which can begin a string derived from the left hand side of a production
rule. A complete description of an aigorithm for determining all of the first sets for a grammar can be found in

Aho, Sethi & Ullman [2].

Example representation of a grammar

As an example of how a grammar is stored, consider the grammar:

o O o >

TR T Ui

W

BCD | a
b|

¢ |

d| xyz | xyz

a a
Ihs: %%% x hs: A
rhs: ™\ rhs:
(A @ee (s H{cH o)@
J
fst: | a b c H X Xyz fst: | a b c d X Xyz
\ J _J
4)
lhs: B
4 .
hs: D w ms:
ths:
d
[_/ fst: | b | tambda
- J
@)
e
Ihs: C A
—) rhs:
: @
fst. | d x HH wz fst: | ¢ lambda
\ Y, _ Y
Figure 5

14

Upper case letters indicate a non-terminal and lower case letters indicate terminals. In the
recognizer, the grammar would be represented as is shown in Figure 5. The rules are stored
alphabetically according to the left hand side. The first rule is added by the recognizer.

In Earley's algorithm, each state consists of a production rule, a position in the
alternative of that rule, a look ahead string, and a pointer to a state set. The class STATE
(Figure 6) is used to represent a state. lts features include:

b: an integer pointer to a position in the linked list which represents the
grammar. It indicates the left hand side of the production.

p: an integer pointer to a position in the feature rhs of the RULE indicated by

Ip. indicates the production alternative.

dot: an integer pointer to a position in the aiternative.
look: the look ahead string.
point: an integer pointer to a STATE_SET

The class STATE_SET (Figure 7) joins these states together into a linked list by inheriting
from LINKED_LIST. All the states are then contained in the feature als of REC2 (Figure 8),
which is a linked list of STATE_SET.

4 N
class STATE class LINKED_LIST [STATE]
Ip: INTEGER,;
rp: INTEGER,;
dot: INTEGER,;
look: STRING; class STATE_SET)
point: INTEGER;
\ J
, Figure 7
Figure 6

Class STATE Class STATE_SET

15

class REC2
als: LINKED_LIST [STATE_SET];

Figure 8
Class REC2

As mentioned above, the recognizer is divided into two parts. RECH, the first part of
the recognizer, creates a GRAMMAR object, and then calls on the GRAMMAR feature
READ_GR to read the input grammar from the file ZBNF. READ_GR stores the rules in its
feature R. If it does not encounter any errors, it continues on to find the first set of each left
hand side and stores them in the feature R with the input grammar. After READ_GR is
finished, REC1 stores the grammar structure in a file, GRAMMAR.STORE. Eiffel makes
this task incredibly simple. The Eiffel library contains a class called STORABLE [13]
Inheriting from this class allows a user to store entire objects with a single instruction.
Objects can be retrieved just as easily. In this manner, the entire grammar structure can
easily and quickly be stored, and then retrieved multiple times, eliminating the need for
reprocessing the grammar.

REC2, the second part of the recognizer, picks up where REC1 left off. It retrieves
the grammar structure from GRAMMAR.STORE, opens the file containing the input string,
ZINPUT, and proceeds to process the input string according to Earley's algorithm. Earley's
algorithm will not be described in detail here. A short description can be found in Appendix A.
More expansive descriptions can be found in [9] and [10].

While Earley's algorithm may seem straightforward at first glance, the
implementation becomes more complicated when A-rules (empty production rules) are allowed

in the input grammar. Special allowances must be made in both the predictor and completer,
as will now be described.

16

If the position of the dot in the current state is before a non-terminal, the predictor is
used to operate on that state. Suppose the current state is:

S:=.A+B : 1
and the alternatives of A are:

A:=C+D
=E+ F

The predictor will add the following two states to the current state set:

>
I

=.C+D + 1
A= E+F + 1

In this case, the look-ahead is ‘+' because that is what follows A in the current state. |f
instead A was at the end of the production, then the look-ahead would be the look-ahead from
the current state. However, when A is followed by another non-terminal, say X, a new state
must be added for each terminal in the first set of X. This becomes complicated when one of
the alternatives of X is a A-rule. Then the process must be repeated until a non-terminal does
not produce a A-rule or the end of the production of the current state is reached.

Another example of A-rules causing trouble is in the completer. The completer looks
at the pointer of the current state, then examines the states in that state set. However, the
pointer of a state which contains a A-rule will be the current state set. This means that
there are still more states which could be added to that state set. As part of the completer
operating on a A-rule state, these states must be examined. Since they are not yet known,
an alternative solution must be found. In this implementation, a list is kept of those states
which contain A-rules, are in the current state set and have been processed by the completer.
When a state that could potentially be affected is added to the current state set, it is
examined. Itis possible that this could result in more states being added which also need to

be checked, and these states could add more states which also need to be checked and so
forth.

17

Other than the above nuisances caused by A-rules, the implementation of the
recognizer was made relatively straightforward by the extensive use of linked lists, and the
use of the object-oriented language Eiffel as the implementation language.

18

TEST CASES

Two groups of tests were conducted to measure the performance of Earley's
algorithm. The first group of tests was designed to illustrate how Earley's algorithm
performs in large applications involving programming language grammars. The second group
of tests was designed to measure how Earley's algorithm performs in smaller applications
involving small to moderate sized grammars and input strings. Several different grammars
and input strings were used in timing the performance of the recognizer. Appendix C contains
each of the grammars used in these tests. Appendix D contains the input strings.

To test the behavior of Earley's algorithm with programming language grammars as
input, subsets of two existing programming languages were used. The first set of grammars
describes subsets of an existing LR(1) programming language, Basis [8]. The second set of
grammars describes subsets of Eiffel, the programming language used in the implementation
of the recognizer. The original Eiffel grammar is contained in [12]. The grammars are named
according to which set they belong to and the number of production rules they contain. For
example, Basis and Eiffel grammars containingg 25 production rules would be named b.25 and
e.25, respectively. The exceptions to this naming convention are the expression grammars
b.aexp and b.lexp, which describe arithmetic and logical expressions, respectively.

The input strings used with the Basis and Eiffel grammar subsets are divided into
groups according to which language constructs they contain. Members of different groups
contain one or more different constructs. Like the grammars, the names of the input strings
also begin with "b.” and "e.", followed by their group name and the number of symbols they
contain. In almost all cases, members of the same input string group are simply multiples of

one another. The exceptions to this are the input strings for b.aexp and b.lexp (see
Appendix D).

To test the behavior of Earley's algorithm with small, non-programming language
grammars as input, two sets of grammars were used. The first set of input grammars
describes computer commands. The second set of input grammars describe input to an
existing programming tool used in conjuction with the Basis language [8], Config. As above,

19

the grammars are named according to which set they belong to and the number of production
rules they contain. The names of the Config grammars begin with "c" The names of the
command (instruction) grammars begin with "i". Input strings are also named similarly.
However, the input strings used in these smaller are grouped slightly differently since the
input strings do not double in content when they double in size. Unlike the Basis and Eiffel
input strings, input strings contained in the same group will contain different constructs. This
is an important factor to remember when examining the execution times presented for these
grammars and input strings in the following section.

The different grammars and input strings used in the timings of both parts of the
recognizer, REC1 and REC2, will show not only how performance differs with differing input
strings, but also how it varies depending on the size and nature of the input grammar. These
results will be presented and discussed in the following sections, and will help determine the
potentially successful uses for Earley's algorithm.

RESULTS

This section will present the results of using the test cases described in the previous
section as input to the recognizer. The times given are shown in minutes and seconds and
were recorded on a Sun IV Workstation. The error range is plus or minus .4 seconds. The
results of the first group of tests involving the programming language grammars will be
presented and discussed followed by the results of the second group of tests.

For each group, the results of the first part of the recognizer, REC1, will be shown
and briefly discussed. These will be followed by the results of REC2, which are far more
interesting because they reflect the actual recognition time, and therefore will be an
important factor in determining the usefulness of Early's algorithm. This section will include
explanations of the time variances between input strings and between grammars. This will
illustrate how the execution time of Early's algorithm is influenced not only by the length of
the input string, but also by the characteristics of the input grammar.

Table 1 shows the times recorded when the Basis grammar subsets were used as
input to REC1. For these particular grammars, the execution times increase linearly as more
production rules are added to the grammars. The largest of the grammars, b.253, is the
entire basis programming language grammar. Table 2 shows the times recorded when using
the Eiffel grammar subsets as input to REC2. These, too, progress linearly. However, when
Tables 1 and 2 are compared, it is evident that the variance is not strictly due to the number
of productions. The reason for this is that REC1 must calculate the first sets of each left
hand side after it reads in a grammar. The production rules in the grammar can make this
either a simple or complicated procedure. The simplest case would be if all the production
alternatives began with a terminal and the grammar contained no empty production rules.
This is highly unlikely in a programming language grammar. When an alternative begins with
a non-terminal, its first set must be found so it can be included in the first set of the left
hand side. If the non-terminal derives an empty production, the next symbol in the right hand
side must also be examined, which increases execution time. While these results are
somewhat interesting, the work done in REC1 is preliminary and can be used repeatedly.
Therefore it gives little or no information about the usefulness of Early's algortihm.

REC1

b.05 0:00.7
b.10 0:01.1
b.15a| 0:02.0
b.15b] 0:01.5 REC1
b.20 0:02.3

e.25 0:01.9
b.22 0:02.7

- 0031 e.50 0:04.6

b.2 — e.100| 0:09.7
b.34 0:03.7

e.150 0:17.8
b.41 0:04.0

e.200 0:29.6
b.48 0:04.7

e.227 0:35.1
b.55 0:05.1
b.aexpl 0:01.2
b.lexp} 0:02.5 TABLE 2
b.253] 1:12.0 Execution times for REC1

using Eiffel grammars as input
TABLE 1
Execution imes for REC1

using Basis grammars as input

Tables 3-10 show the times recorded for REC2 for various input strings and
programming language grammars. Each table shows how the times varied for a particular
group of input strings. Recall that Earley claimed a complexity of O(n) for a given LR(k)
grammar, where n was the length of the input string. Tables 3-6 illustrate this dependency
very well. In general, they show that, for a particular LR grammar, the execution time
doubles when the input string is doubled. Note that these tables show what happens when the
input string is exactly doubled, not when only its length is doubled (see Appendix D). This
result is nice, but somewhat expected, and there are more interesting points to discuss.

b.a.3 b.a.7 b.a.14 b.a.28 b.a.56
b.05 0:01.9 0:02.6 0:04.2 0:07.3 0:13.5
b.10 0:04.1 0:06.4 0:10.9 0:19.9 0:37.9
b.15a 0:10.6 0:16.5 0:28.0 0:51.3 1:37.9
b.15b 0:03.9 0:08.4 0:15.0 0:28.2 0:54.6
b.20 0:10.5 0:18.8 0:32.7 1:00.7 1:57.0
b.22 0:11.5 0:20.5 0:35.8 1:06.6 2:08.7
b.27 0:13.9 0:23.3 0:41.0 1:16.6 2:28.7
b.34 0:13.5 0:34.8 1:041 2:03.3 4:02.9
b.41 0:13.4 1:16.0 2:26.7 4:48.6 9:39.3
b.48 0:20.4 0:45.6 1:24.7 2:37.8 5:09.5
b.55 0:20.6 1:27.5 2:46.7 5:26.9 10:52.7
TABLE 3

Execution times for REC2 using Basis grammars and input strings

b.b.9 b.b.18 b.b.36 b.b.72
b.20 0:20.1 0:354 1:05.9 2:07.3
b.22 0:21.8 0:38.4 1:11.7 2:08.7
b.27 0:24.6 0:43.6 1:22.0 2:39.5
b.34 0:45.5 1:25.7 2:47.0 5:33.0
b.41 1:52.5 3:40.2 7:17.9 14:43.6
b.48 0:56.4 1:44.4 3:21.4 6:39.1
b.55 2:04.0 4:00.2 7:54.9 15:56.3
TABLE 4

Execution times for REC2 using Basis grammars and input strings

23

24

b.c.11 b.c.22 b.c.44 b.c.88
b.27 0:25.4 0:35.3 1:25.3 2:45.7
b.34 0:46.3 1:27.5 2:50.6 5:39.5
b.41 1:53.8 3:42.7 7:23.7 14:52.7
b.48 0:57.2 1:46.1 3:25.2 6:46.1
b.55 2:15.2 4:02.2 7:58.5 16:02.9
TABLE 5

Execution times for REC2 using Basis grammars and input strings

b.d.17 b.d.34 b.d.68 b.d.136

b.34 1:14.8 2:25.3 4:49.3 9:45.6

b.41 2:20.1 6:37.2 13:11.1 27:00.5

b.48 1:30.0 2:52.3 5:38.8 11:23.1

b.55 3:35.7 7:04.9 14:11.7 29:00.5
TABLE 6

Execution times for REC2 using Basis grammars and input strings

Notice in Table 3 how the times for grammars b.15a and b.15b differ. These two
grammars contain the exact same number of production rules. The times shown are for the
same input strings. Yet the execution times for grammar b.15a are almost twice those for
b.15b. Here we see the dependence of the execution time for Earley's algorithm on the
number of states created during the execution of the algorithm. The use of grammar b.15a
results in the creation of 101, 165, 288 , 534 and 1026 states, respectively, for the 5 input
strings shown in Table 3. Compare these with 51, 117,212,402, and 782 states for

grammar b.15b. A graph of these results is shown in Figure 9. This same situation is apparent
elsewhere in Tables 3-6. Compare the times recorded for grammars b.41 and b.48. These
grammars were both derived from b.34. Seven rules were added to make b.41, and 14
different rules to make b.48. However, for these input strings, many more states were
created during execution with b.41. For the input strings shown in Table 3, the numbers of
states created using grammar b.48 were 154, 349, 642, 1228 and 2400, while the number of
states created using b.41 were 126, 469, 894, 1744, and 3444. These results can be seen in
Figure 10. It is evident here how great an effect the nature of the grammar can have on the
achieved recognition time.

1000 = . b.15a
800 =
" b.15b
600 =
number of .
states
400 =]
200 = -
[]
]

{ | I) | l

10 20 30 40 50 60
length of input string
Figure 9

Graph of number of states generated by Earley's algorithm
for grammars b.15a and b.15b and inputs b.a.3 through b.a.56

3500 =
. b.41

3000 =

2500 ==
L b.48

2000 =
number of

states
1500 ==

1000 ==

500 ==

L | i | I

10 20 30 40 50 60
length of input string
Figure 10

Graph of number of states generated by Earley's algorithm
for grammars b.41 and b.48 and inputs b.a.3 through b.a.56

Recall that Earley calculated the complexity of his algorithm by determining the
maximum number of states that could be created during its execution for a particular
grammar. From the number of states created during the execution of Earley's algorithm for
the grammars discussed above, one can determine a more precise complexity for Earley's
algorithm. Given a grammar and an input string, the constants of the linear equation which
describe the complexity of Earley's algorithm for an LR(1) grammar can be determined for
this input. This is done by recording the number of states created during the execution of the
recognizer for the input string, then doubling the input string and recording the number of
states created during the execution of the recognizer for this doubled input string. A system
of two linear equations is then solved. The solution reveals the values of the constants of the
complexity of Early's algorithm for this grammar and input string. This complexity holds true
for the given grammar and any input string that is a multiple of the input string used to

determine the complexity. For the grammars b.15a, b.15b, b.41 and b.48, and input strings
b.a.7, b.a.14, b.a.28 and b.a.56, the constants for the complexity of Earley's algorithm will now
be determined.

For grammar b.15a and input strings b.a.7 through b.a.56, the number of states
created produces the following equations:

165=7a+b (1)
288 = 14a + b 2)
534 =283 + b (3)
1026 = 56a + b (4)

The values of a and b are determined by solving any two of the above equations

simultaneously. Multiplying equation (1) by two and subtracting the equation (2) from the
result produces:

42=b

This gives the value for b. Substituting for b in equation (1) gives the value for a. The
solution to the equations is

a=17.57142857
b=42

By substitution it can be shown that these values hold true for the remaining equations as
well. Therefore, for this grammar and set of input strings, the complexity of Earley’s
algorithm is

17.57142857n + 42

where n is the length of the input string.

For grammar b.15b and input strings b.a.7 through b.a.56, the number of states
created produces the following equations:

117=7a+b (5)

212=14a+b (6)
402=28a +b (7)
782 =56a+b (8)

By solving any two of these equations simultaneously as was done above, it is determined
that

a=13.57142857
b=22
Therefore the equation describing the complexity is

13.57142857n + 22.

For grammar b.41 and input strings b.a.7 through b.a.56, the number of states
created produce the following equations:

469=7a+b (13)
894 = 14a + b (14)
1744 = 28a + b (15)
3444 = 56a + b (16)

Again by solving two of the above equations simultaneously, it is determined that

a=60.71428571
b=44

The equation describing the complexity is
60.71428571n + 44.

For grammar b.48 and input strings b.a.7 through b.a.56, the number of states
created produces the following equations:

343=7a+b ()

642 = 142 +b (10)
1228=28a +b (11)
2400 = 56a + b (12)

By solving two of the above equations simultaneously, it is determined that

a= 4185714286
b =256

The equation describing the complexity is
41.85714286n + 56.

In studying the grammars and input strings whose results are shown above, one
notices that the portions of the grammars which describe arithmetic, logical, and relational
expressions, and the input strings which contain these expressions, play a large part in
increasing the execution time of the recognizer. Tables 7 and 8 show the results of using
arithmetic and logical expression grammars along with short input strings as input to the
recognizer. These tables illustrate the effect that expressions have on the recognizer. The
high recognition times indicate that a large number of states are being created during the
execution of the recognizer. This and the preceeding results illustrate the importance of the
role which the grammar plays in the recognition process.

Execution times for REC2 using Basis expression grammars and input strings

b.e.1 b.e.3 b.e.7 b.b.15
b.aexp 0:11.6 0:20.1 0:37.0 1:11.1
b.lexp 1:30.9 2:13.2 3:38.0 6:28.9
TABLE 7

Execution times for REC2 using Basis expression grammars and input strings

b.i.5 bit.7 b.i.9 b.f.11
b.aexp 0:25.4 0:26.3 0:38.2 0:49.3
b.lexp 2:35.9 2:33.5 4:07.1 5:40.1
TABLE 8

Execution times for REC2 using Eiffel grammars and input strings

e.a.d e.a.”7 e.a.is e.a.31
e.25 0:02.1 0:05.5 0:11.4 0:23.2
.50 0:02.5 0:07.0 0:14.6 0:30.2
e.100 0:05.4 0:11.7 0:23.5 0:47.0
e. 150 0:05.5 0:11.9 0:23.8 0:47.7
e.200 0:05.9 0:12.3 0:24.2 0:47.9
e.227 0:07.4 0:16.8 0:36.6 1:14.2
TABLE 9

Execution times for REC2 using Eitfel grammars and input strings

eb.15 e.b.30 6.b.45 e.b.60
e.100 0:31.3 0:54.1 1:18.6 1:36.3
e.150 0:33.3 0:57.8 1:25.5 1:45.2
©.200 0:34.5 0:59.9 1:29.4 1:50.0
e.227 0:52.3 1:32.2 2:19.5 2:49.8
TABLE 10

30

The results of using the Eiffel grammar subsets and input strings as inputs to the
recognizer are shown in Tables 9 and 10. These grammars and input strings differ in two
important ways from the basis grammars and input strings. First, the expression portions of
the grammars were omitted until the grammar reached considerable size. This also means
expressions were omitted from the input strings. Secondly, the Eiffel language is
characterized by the use of keywords such as "class”, "export”, "inherit", "feature”, etc.
The result in Earley's algorithm is that fewer predictions are made until they are needed.
Even the times for the larger grammars remain within a somewhat reasonable frame
because the recognizer never gets to the point of having to predict many expressions that it
will never need. This does not mean to imply that the Eiffel grammars will not make the
recognizer grind when given an input string which contains an expression. It is only meant to
illustrate that it is possible to find a reasonably sized grammar which provides acceptable
results when used with Earley's algorithm.

RECH RECH

i.07 0:00.9 c.06 0:00.5
i.08 0:00.8 c.15 0:01.1
i.12 0:01.3 c.21 0:01.5
i.17 0:01.3 c.29 0:02.3
i.18 0:01.8
i.26 0:02.3 TABLE 12
i.30 0:02.7 Execution times for REC1 using
33 0:03.1 Config grammars as input

TABLE 11

Execution imes for REC1 using
command grammars as input

Now the results of the second group of tests using small, non-programming language
grammars will be presented and briefly discussed. Tables 11, and 12 show the results of
using the command and Config grammars as input to REC1. Like the previous REC1 results

3

presented for the Basis and Eiffel grammar subsets, the execution times increase linearly as
more production rules are added to the grammars. Once again, these results are not of
particular interest, and are shown primarily for completeness.

Tables 13, 14, and 15 show the results of using the command grammars and input
strings as input to REC2. Tables 16, 17 and 18 show the results of using the Config grammars
and input strings as input to REC2. Recall that the input strings used in these particular tests
do not double in content when they double in length as the previous input strings did. This is
due to the nature of the programming tools and commands, and their corresponding grammars.
Therefore, the different input strings contain different constructs. Earley's algorithm creates
different numbers of states for these different constructs, and the differences are reflected in
the recognition times. For this reason, the linearity of the results is not as apparent as it was
when the programming language grammars and input strings were used as input to the
recognizer. However, the poor performance of Earley's algorithm in these situations is quite
apparent. Notice how quickly the recognition times increase when the size of the grammars
increase in these examples. The tables show high recognition times for moderately sized
grammars and input strings. From this information, it is doubtful that Earley’'s algorithm would
be helpful in the implementation of programming tools. However, there is one more fact that

must be considered in regards to the command grammars and input strings. This issue will be
discussed in the following section.

i.a.13 1225 i.b.16 ib.28
i.09 0:20.7 0:31.0 i.17 0:31.3 0:415
i17 0:32.0 0:427 33 4595| 7:01.7
i.33 5:19.2 7:23.6

TABLE 14

Execution times for REC2 using
TABLE 13 command grammars and inpu stings
Execution imes for REC2 using
command grammars and input strings

32

i.c.11 i.c.22 i.c.31 i.c.34 i.c.48
i.08 0070 ----- | - | -] ee---
.12 0:22.5 0360 | ----- | ----- | «eo--
i.18 1:07.5 1:47.1 2465 | ----- | -----
.26 1078 | 1478 | 3077] 3021 -----
i.30 2:21.5 3427 6:20.5 6:05.9 8:11.2
i.33 3:32.5 5:31.8 9:17.2 8:57.3 12:02.8

TABLE 15

Execution times for REC2 using command grammars and input strings

c.a.4 c.b.5 c.b.11
c.06 0:00.7 c.15 0:14.2 0:57.6
TABLE 16 TABLE 17
Execution times for REC2 using Config grammars and input strings
c.c.7 c.c.13 c.c.19 c.c.25 c.c.3?2
c.21 0:45.8 1:26.5 1318 - ----1]1-----
c.29 2:37.2 3:17.6 4:18.9 5:21.2 6:31.4
TABLE 18

Execution times for REC2 using Config grammars and input strings

33

DISCUSSION

It is now time to evaluate the results presented in the previous section, and determine
whether Earley's algorithm can be used successfully in any of the applications discussed
earlier.

First, consider the use of Earley's algorithm in large, programming language
applications such as a compiler-compiler or syntax-directed editor. From the results
presented in the previous section, the conclusion must be drawn that these are not
applications in which Earley's algorithm performs well. Recall that the purpose behind using
Earley's algorithm in a compiler-compiler was twofold. First, it would allow LR(1) grammars
to be expanded to include non-LR(1) constructs. Second, it would allow compiler writers the
freedom to concentrate on implementation issues during.compiler development. However,
these results indicate that it would be more beneficial to bear the inconvenience of a LR(1)
grammar and compiler-compiler than to use Earley's algorithm in a general context-free
recognizer. This is primarily due to the lengths of the execution times of Earley's algorithm
when given programming language grammars and input strings as input. The exception to
this may be a syntax-directed editor. Since this is an interactive application, the poor
performance of the machine will not be as evident when compared to the performance of the
user. Consider that with some of the Eiffel grammars and input strings, the recognizer's
speed is in the range of 25-75 symbols per minute. Compare this to the speed of an average
typist, 20-60 words per minute. If symbols are equated with words, there is not much

difference between the two. Perhaps this is a topic that should be explored in another
investigation.

Now, consider the use of Earley's algorithm to parse input files to software tools,
and to check command files for errors. It has been shown that for the programming tool used
in this research, Earley's algorithm performed rather poorly. It is evident from these results
that it would not be practical to use Earley's algortihm to assist in the implementation of this
programming tool. The primary reason for wanting to use Earley's algorithm to assist in the
implementation of programming tools was to simplify the job of the tools writer. However, it
is better to inconvenience a programmer by forcing them to write additional code than to
inconvenience an entire group of users with an inefficient and slow tool. It is not appropriate

34

for users to suffer so that a tool writer's job can be simplified.

The recognizer also appears to have performed poorly when using command
grammars as input. The purpose in using Earley's algorithm to parse command files is to
catch errors before they cause problems. Since it is possible for a small list of commands to
take hours to execute, a minute spent insuring that a command file is correct could save a
great deal of time. However, the results indicate that the list of commands that could be
checked using Earley's algorithm in a relatively short period of time is a small one, and
therefore one that could probably be done easily by sight or other method.

From these results it can be seen that Earley's algorithm is useful in very few
instances. Overall, the conclusion that must be drawn is that Earley's algorithm cannot be
used successfully in a general context-free recognizer. The enormous number of states
which must be created and processed during the execution of Earley's algorithm provide a

tremendous amount of excess work, and therefore produce lengthy execution times for most
realistic applications.

35

(1l

[2]

[3]

[4]

5]

(6]

]

(8]

9]

(10]

[11]

(12]
[13]

[14]

REFERENCES

A. V. Aho, J. E. Hopcroft and J. D. Uliman, The Design and Analysis of Computer
Algorithms, Addison-Wesley Publishing Company, U. S. A., 1974.

A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles Techniques, and Tools,
Addison-Wesley Publishing Company, U. S. A., 1985.

A. V. Aho and J. D. Ulliman, The Theory of Parsing, Translation and Compiling, Vol. 1:
Parsing, Prentice-Hall, U. S. A., 1972.

R. C. Backhouse, Syntax of Programming Languages: Theory and Practice,
Prentice-Hall, London, 1979.

M. Bouckaert, A. Pirotte, and M. Snelling, "Efficient Parsing Algorithms for General
Context-free Parsers,"” Information Sciences, Vol. 8, No. 1, Jan 1975, pp. 1-26.

Y. T. Chiang and K. S. FU, "Parallel Parsing Algorithms and VLS| Implementations
for Syntactic Pattern Recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-6, No. 3, May 1984, pp. 302-314.

T. W. Christopher, P. J. Hatcher and R.C. Kukuk, "Using Dynamic Programming to
Generate Optimized Code in a Graham-Glanville Style Code Generator,”

Pr in f the ACM SIGPLAN '84 ium on Compiler Constuction,
SIGPLAN Notices, Vol. 19, No. 6, June 1984, pp. 25-36.

P. F. Dubois, and Z. C. Motteler, Basis User's Manual, M-189, Lawrence Livermore
National Laboratory, U.S.A., 1987.

J. Earley, An_Efficien ntext-Free Parsing Algorithm, thesis, Department of
Computer Science, Carnegie-Mellon University, 1968.

J. Earley, "An Efficient Context-Free Parsing Algorithm®, Communications of the
ACM, Vol. 13, No. 2, February, 1970, pp. 94-102.

B. Meyer, Eiffel: A Lan nd Environment for re Engineering, Interactive
Software Engineering, Inc., U. S. A, 1987.

B. Meyer, Eiffel Library Manual, Interactive Software Engineering, Inc., U. S. A., 1988.
B. Meyer, Eiffel User's Manual, Interactive Software Engineering, Inc., U. S. A., 1988.
B. Meyer, Qbject-oriented Software Construction, Prentice-Hall, Great Britain, 1988.

36

[13]

[16]

(17]

(18]

[19]

37

K. O'Hair, The LB System User Manual, Lawrence Livermore National Laboratory,
Livermore, CA, 1985.

Programming Utilities for the Sun Workstation, Sun Microsystems, Inc., U. S. A., 1986.

M. Snelling, "General Context-Free Parsing in Time N2 " International Computing
Symposium 1973, A. Gunther et al.(eds), North-Holland Publishing Co., 1974, pp.
19-24.

G. Sh. Vol'dman, "A Parsing Algorithm for Context-Sensitive Grammars,”
Programming and Computer Software, Vol. 7, No. 6, Nov-Dec 1981, pp. 302-307.

G. A. Zaitman and O. A. Kholodenko, "Program For a Syntax Analyzer for Arbitrary
CF-Grammars," Cybernetics, Vol. 14, No. 1, Jan-Feb 1978, pp. 36-40.

38

APPENDIX A -- Earley's Algorithm

Earley's algorithm is a recognition algorithm for general context-free grammars. For
more detail see [9] and [10].

Earley's algorithm is based on the use of states and state sets.A state set is simply
a group of states. A state consists of a production rule, a dot positioned on the right hand
side of that production rule, a look-ahead string, and a pointer to a previous state set. To
begin, the initial state is put into the first state set. The initial state has the form of:

Xi=.2@ @ 0

where Z is the goal symbol of the input grammar, @ is a unique look-ahead symbol, and 0
points to the first state set. The final state set will consist only of a final state. The final
state has the form of:

X=2@. @ 0
If the final state set is reached, the string is considered valid. Otherwise it is not.

EARLEY'S ALGORITHM:

1) Initialization
Put the initial state into the first state set
2) For each state set or until we reach the final state set do
For each state in the set do
if the dot is before a terminal, SCAN
elsif the dot is before a non-terminal, PREDICT
elsif the dot is at the end of the rule, COMPLETE
endif
endfor
endfor

3) If the final state set has been reached, accept the string
else reject the string

SCAN

1) I the next input symbol matches the terminal following the dot, add a state to the next
state set which is identical to the current state, except that the dot is advanced one
position.

PREDICT

1) For each alternative of the non-terminal in the grammar, construct a new state with
the dot at the beginning of the alternative's right hand side, and the pointer set to the

current position in the linked list of state sets. The look ahead of the new state will be
as follows:

a) if a terminal follows the non-terminal in the current state, the look ahead will
be that terminal

b) if nothing follows the non-terminal in the current state, the look ahead will be
the look ahead from the current state

c¢) it a non-terminal follows the non-terminal in the current state, then a new
state will be constructed for each terminal which could possibly occur next,
with that terminal as the look ahead

COMPLETE

1) Compare the look ahead string of the current state with the next input symbol. [f they
match, look at the state set indicated by the pointer of that state. Find those states in
that state set which have the left hand side of the current state after the dot. For
each of these states, put a similar entry into the current state set, except advance
the position of the dot by one.

39

XB -T

Appendix B contains the Eiffel code of the recognizer. There are two parts to the
recognizer, REC1 and REC2. In the first phase, execution begins with the Create feature of
REC1. REC1 is responsible for reading the input grammar, processing it into its run-time
structure, then storing the structure in a file. In the second phase, execution begins with the
Create feature of REC2. REC2 retrieves the grammar structure, then processes the input
string according to Earley's algorithm.

class REC1

— This is a root class responsible for reading the input grammar into its run-time structure,
— then storing that structure in the file grammar store.

inherit
STD_FILES
feature
g:GRAMMAR;
Creale is
do
g.Create; —create grammar object
g.read_gr; — read grammar
if (g-stop) then — if an efmor occurred
output.putstring(*GRAMMAR PROCESSING FAILED");
new_line;
else g.store{"grammar.store™}; — slore the grammar structure
output.putstring(*"GRAMMAR PROCESSING COMPLETE");
new_line;
end; - if-else
end; ~ feature Create
end; ~ class REC1
class GRAMMAR

— This class represents a grammar and the operations which read the grammar from the input file
export
r, stop, store, retrieve, read_gr

inherit
STD_FILES ;
STORABLE

feature
r:S_LIST; ~ input grammar
e0g:BOOLEAN; - end of grammar
eop:BOOLEAN; — end of production
e0a:BOOLEAN; - ond of allemative
stop:BOOLEAN; — ermor stalus
fin:-BOOLEAN;

infile:FILE; - grammar input file
f_Ist:SYMBOL_LIST;

get_sym:STRING s
- read the next symbol from the grammar input file
local

temp:CHARACTER,

t_sinSTRING; - lemporary variables
done:BOOLEAN;

40

do
from done:=FALSE;

1_str.Create(30);
until infile.end_of_file or done
loop from femp:= infile.getchar; - skip while space
unti infile.end_ol_file or temp /= \n’ and temp /= \t' and lemp /= ¥’ and temp /=""
loop temp:=infile.getchar; ~ temp <> whitespace
end; = loop
from - get non-blank token

until infile.end_of_file or temp ="n' ortemp = ' or temp = ¢ ortemp = *"
loop t_str.string_char(temp);

temp:=infile.getchar;
end;
if{t_str.same_as("&c")) then - its a comment
from
until infile.end_of_file or lemp = "\’ or temp =\’
loop temp:=infile.getchar;
end;
1_str.clear;
else done:=TRUE;
end; ~if
end; — loop
it (infile.end_of_file) then
stop;=TRUE;
end;
Result.Clone(t_str);
end; - lealure get_sym

get_alt:SYMBOL_LIST s
- this feature collects the symbols of the next altemative of a production rule
local
temp:CHARACTER; t_sym:SYMBOL_LIST;
t_str, ot_str:STRING; i:INTEGER;
do
from t_sym.Create;
t_str.Create(30});
ot_str.Create(30);

t_str=get_sym;
eoa:=FALSE;
until eoa or stop
loop if (I_str.entry(1) = ‘<" and then t_str.eniry(t_str.length) = '>" and then t_strlength > 2) then
t_sym.insert_left{t_str); - it's a non-terminal
t_sir:=get_sym,
else if {t_strsame_as("&a")) then
eoa:=TRUE;
elsif {t_str.same_as(*&p")} then
eoca:=TRUE;
eop:=TRUE;
else from =1
unti! i >=t_strlength

loop if (L_str.entry(i) = '&") then
if (1_str.entry(i+1) ='& or U_strentry(i+1) = ‘<’ or t_str.entry(i+1) = '>") then
i=is1
elsif (t_str.entry(i+1) = 'b) then
i=i+1
t_str.enter(i, '),
else putstring("ERROR:Term");
end;
end; — i
ol_str.string_char(t_str.entry(i));
i=i+1;
end; - loop

42

if (ic=t_str.length) then
if (I_str.entry(i) = "8’) then
putstring("ERROR: last &7);
olse ot_sir.string_char(t_str.entry(i));
end

end; —if
t_sym.insart_left(ot_str.duplicate);
ot_str.clear;
t_stri=get_sym,
end; - if-else
end; - ifelse
end, —loop
Result.Clone(t_sym),
end; - fealure get_alt

get_rhs:LINKED_LIST[SYMBOL_LIST] 5

- This fealure collects all the possible alternatives (or right hand sides) which correspond
— lo the most recent left hand side. If an error occurs, we must set stop:=TRUE; We need to

~ look out for:
- &c comment &> terminal >
- &a start alternative &« terminal <
- &p end production &b terminal blank
- lambda productions & terminal &
— The altematives will be placed in a linked list, which will be returned as the result.
local
t_rhs:LINKED_LIST[SYMBOL_LIST]; — lemporary variables
t_sym:SYMBOL_LIST; L_strSTRING;
do
from eop:=FALSE;
t_rhs.Create; ~ allocate temporary variables
t_sym Create;,
until eop or stop
loop 1_sym:=get_alt;
1_sym start;
t_rhs.insert_left(t_sym);
end; — loop
Result.Clone(t_rhs);
_rhs.forget;
t_sym.forget;
end, — feature get_rhs

get |hs:STRING &
- This feature gets the left hand side of the next set of productions, if there is one. 1t also looks for the end

— of the grammar. If an error occurs, we must set stop:=TRUE; The Ihs should have the form <non-terminal>.
~ Therefore as soon as we see <, we gobble up characters until we see >.

local
L_str:STRING; ~ temporary variables
temp:CHARACTER;
done:BOOLEAN;
do
from t_sir.Create(30); ~ allocate {_sir
1_str=get_sym;
until done or infile.end of_file
loop if (t_str.same_as(*&g"}) then
e0g:=TRUE;
done:=TRUE;
elsit {t_str.entry(1) /= "< or t_str.entry(l_str.length /=">") then
stop:=TRUE;
done:=TRUE;
alse done:=TRUE;
end; ~ it-elsit

end; ~ loop

if (stop) then
output putstring("ERROR; invalid grammar file.”); new_line;
output.putstring(*Cannot find left hand side."); new_line;

aisil (infile.eof) then

stop:=TRUE;

output.putstring("ERROR: unexpected end of file*); new_line;
end; —if

Result.Clone(t_str);
end; —leature get_lhs

first(:STRING) &
local

i,jk,pos:INTEGER, ~ save position in grammar
ts:STRING;
do

pos:=r.position;

r.go_find(x);

if (r.ofinght) then
output.putstring("ERROR: missing lhs.");
output.putstring(x)
new_line;
slop:=TRUE;

else f{ Istinsert_lefi(x);
from r.value.ist.stan;

until r.value.fst offright or stop
loop il (r.value fst.value.entry(1} /= ‘<’ or r.value.ist.value entry(r.value.fst.value length) /= '>'
of r.value.fst.value length <= 2) then
first_term (pos};
elsif (r.value.fst.value.same_as("<lambda>")) then
k:=r.value.Ist.position;
r.mark;
r.go(pos);
from r.value.ths stan;
until r.value.rhs.oftright
loop if (r.value.rhs.value present(x)} then
from r.value.rhs.value start
until r.value.ths.value.offright
loop if (r.value.rhs.value.value.same_as(x)) then
first_lambda;
end;
r.value.rhs.value.forth;
end; — loop
end; - il-then
r.value.rhs forth;
end; - loop
r.return;
r.value.fst.go(k);
r.value.fst.forth;
elsif (not {_lst.present(r.value.fst.value)) then
i:=f value.Ist position;
first(r.value.{st.value);
r.value.fst.goi);
r.value.fst.delete;
else r.value.fst.forth;
end; — if-elsif
end; - loop
f_Ist.del left;
end; - ifthen-else
r.gofpos);

end; — feature FIRST

43

first_term (pos) &
local

ts:STRING;

i, KINTEGER;

do

1s.Clone(r.value.fst.value)
k:=r.value fst position;
r.mark;
r.go{pos);
it (not r.value.ist.present(ts)) then
fin:=FALSE;
i:=r.value.lst.position;
r.valua.fst.finish;
r.value.fst.insert_right(ts);
r.value.fst.go(y),

end;

r.return;
r.value.fst.go(k);
r.value fst.fonh;

end;

first_lambda

local

— feature first_term

(3

i, INTEGER;

do

if (r.value.rhs.value.islast) then
if {not r.vajue. st present(*<lambda>")) then

else

end;

end;

end;

i:=r.value.fst.position;
r.value.fst finish;
r.value fst.insert_right("<lambda>");
r.value.fst.go(i);
fin:=FALSE;
—if

i:=r.value.rhs.value.position + 1;
if (not r.value.fst.present(r.value.rhs.value.i_th}) then

end;

j:=r.value.fst.position;
r.value.fst finish;
r.value.fst.insert_right(r.value.rhs.value.i_th(i));
rvalue.fst.go(j);
fin :=FALSE;
~ if-then
— il-else
- {eature first_lambda

44

get_firsts
— This feature finds all the firsts of each left hand side in the grammar. It makes one pass
- through the grammar coflecting the terminals and non-terminals that appear as the first

— symbots on all the right hand sides, then uses the Ieature first to recursively break down
~ the non-teminals.

local
cist:STRING;
JINTEGER,;
t:SYMBOL_LIST;
do
from from rsiart;
t.Creale;
until r.offright
loop t.wipe_out;
from r.value.rhs start;
until r.value.rhs.offright
loop it (r.value.rhs.value.empty) then
il (not 1.present("<lambda>")) then
Linsert_left(*<lambda>");
end; ~if
else if (not t present(r.value.rhs.value first)) then
tinsert_left(r.value.rhs.value.first.duplicate);
end;
end;
r.value.rhs forth;
end; - loop
until fin
loop fin:=TRUE;
from r.finish;
until r.offleft or stop
loop from r.value.fst.stan;
until r.value fst.offright or stop
loop clst.Clone(r.value.fst.value);
if (cist.entry(1} = *>' and cfst.entry(cist length) = '>'
and not cfst.same_as("<lambda>") and cfst.Jength > 2} then
J:=r.value.fst position;
irst{ctst);
r.value.fst.go(j};
r.value.ist.delete;
else r.value.fst.forth;
end; -if
end; - loop
r.back;
end; - loop
end; - loop
end; — feature GET_FIRSTS

feature gr_init &
— This feature reads the grammar from the input file
local
t_rule, t_two:RULE; ~ temporary variables
t_hs:STRING;
t s:SYMBOL_LIST;
t_rhs:LINKED_LIST[SYMBOL_LIST);
do
from rCreate; — allocate grammar slructure
infile.open_read; — open grammar input file
{ Ist.Create,
t_two.Create; — allocate temporary variables
t_rule.Create;
t_lhs.Create(30);
t_rhs.Create;
t_lhs:= get_ths —readina lhs

it (not stop and not eog) then
I_rths:=get_rhs; - read in altematives of lhs
it (not stop) then
1_rvle.assign{t_lhs, i_rhs);
{_two.Clone(t_rule);
r.insert(t_two); — put in grammar
end; - if
end; - it
if (not stop) then
t_rhs.wipe_out;
t_s.Creale;
t_s.insert_righ("@@@");
t_s.insert_right(r.first.Ihs);
t_rhs.inseri_right(t_s);
t_rule.assign(*<%%%>",t_rhs);
1_two.Clone(l_rule);
rinsert(t_two};

end;

until eog or slop

loop 1_lhs:=get_lhs; — read in lhs of grammar
it {(not stop and not eog) then

t_rhs:=get_rhs;

il (not stop) then
t_rule.assign(t_lhs, t_rhs),
t_two.Clone(t_rule);
rinser(t_two);

end; - if

end; ~if
end; — loop
end; - feature gr_intt
read_gr [

— This feature will attempt to open the grammar input file and read the inpul grammar into the
— feature r. If an error occurs which prohibits it from successfully reading the grammar, the feature

— stop will be sel to TRUE. Stop is checked by REC1 to see if the grammar was successfully read.

do
infile.Create(*z.bnf*}; - allocale grammar input file
if (not infile.exists) then
output.putstring(*ERROR: Grammar file does not exist.”);
new_line;
stop:=TRUE;
elsif (not infile readable) then
output.putstring(*ERROR: Grammar file is not readable.”);
new_line;
stop:=TRUE;
else output.putstringl("READING GRAMMAR');
new_line;
gr_init;
output.putstring(*PROCESSING GRAMMAR®;
new_line;
if (not stop) then
get_firsts;
end; —if
infile.close,
end;
end; — feature READ_GR
end; class GRAMMAR

46

class S_LIST
export
back, go_find, nb_elements,
delete, insert, offlett,
duplicate, isfirst, offright,
empty, islast, position,
finish, ith, retum,
first, last, star,
forth, mark, value,
go, merge, wipe_out
inherit
LINKED_LIST[RULE]
redefine present;
feature
present(x:RULE):BOOLEAN [
local
done:BOOLEAN;
hi,lo,Jook:INTEGER;
do
from hi:=nb_elements;
lo:=1)
until done or hi < lo
loop look:= (hi + lo) div 2;
il (i_th(look).eq(x)) then
done:=TRUE;
else il (i_th(look).(x)) then
lo:=look + 1;
else hi:= look-1;
end; —il-else
end; - il-else
end; - loop
if (done) then
Result:=TRUE;
else Result:=FALSE;
end; - f-else
end; —leature PRESENT
go_find{x:STRING) is
local
done:BOOLEAN: hi/lo,look:INTEGER;:
do
from hi:=nb_elements;
lo:=1 X
until done or hi < lo

loop look:= (hi + lo) div 2;
if (i_th{look).lhs.same_as(x)) then
done:=TRUE;
go(look);
else if (i_th(look).lhs.le(x)) then
lo = look + 1;
else hi:= look - 1
end; - if-else
end; ~if-else
end; - loop
if {(not done) then
go(nb_elements);
forth:
end;
end; ~ leature GO_FIND

47

insert(cRULE) &
focal

done:BOOLEAN; hiJo,look,ZINTEGER;
do
Z:=position;
iflempty) then
insert_right(x};
alsif (first.gt{x}) then
go(1);
inserl_left(x);
done:=TRUE;
elsif(last.lt{x)) then
go(nb_elements),
insert_right(x);
done:=TRUE;
else from hi:=nb_elements;
lo:=1;
until i_th(lo).le(x) and i_th(hi).ge(x) and hi<=1o + 1
loop look:= (hi + lo) div 2
if (i_th(look_.lt(x)) then
lo:=look;
else hi:=look;
end; - if-else
end; - loop
goio);
insert_right(x);
end; - it-elsif-elsif-else
go(z);
end; ~ feature insert
end; ~class S_LIST

class RULE

~ This class represents a set of production rules which correspond 1o a single left hand side.
— hs is the non-terminal on the left hand side

- st is a linked list of the possible “firsts® of the Ihs

— rhs is a linked list of all the possible right hand alternatives

export
ths, - Ihs of grammar production
fst, - firsts of ohs
ths, - alternatives of lhs
assign, — assign values 1o |hs and rhs
sel_first | - initialize fst
eq/le lt,gegt — compare left hand sides
inherit
COMPARABLE redefine le,gt,ge
feature
lhs:STRING;

st:SYMBOL_LIST;
ths:LINKED_LIST[SYMBOL_LIST];

assign{left:STRING; right:LINKED_LIST[SYMBOL LIST]) is
~ assign left to lhs and right to ths
do
lhs.Clone(lett);
rhs.Clone(right);
end; - leature assign

set_first (:SYMBOL_LIST) is

- inttialize fst to f
do
fst.clone(f);
end; ~ feature set_first

eq(x:RULE):BOOLEAN is
— tell if the current rule is the same as x
do
it (Ihs.same_as{x.hs)) then
Result:=TRUE;
else Result:=FALSE;
end;
end; — feature eq
gi(x:RULE).BOOLEAN is
— lell if current rule is greater than x
do
il (Ihs.gt{x.lhs)) then
Result:=TRUE;
else Result:=FALSE;
end;
end: - {eature GT

le(x:RULE) : BOOLEAN is
— tell if current rule is less than or equal to x
do

if (Ihs.le(x.lhs)) then

Result:= TRUE;

else Result:=FALSE;

end;
end;

ge(x:RULE);BOOLEAN is
- tell if current rule is greater than or equal to x
do
if (lhs.same_as(x.ls) or hs.gt(x.lhs)) then
Result:=TRUE;
else Result:=FALSE;
end;
end;

t(x:RULE): BOOLEAN is
~ lellif current rule is less than x
do
if (Ihs.same_as(x.lhs) or lhs.gt(s.lhs}) then
Result:=FALSE;
else Result:=TRUE;
end;
end;

Creale is
do
lhs.Create(30);
rhs.Create;
fst.Create;
end; — feature Create
end; - class RULE

class SYMBOL_LIST

~ A SYMBOL_LIST is a linked list of strings used to represent the right hand side of a

— production rule in the input grammar. It is also used 1o represent the first sets. For each
— possible non-terminal, its first set is represented by a SYMBOL_LIST

49

export

back, forth, nb_elements,
change_i_th, go, offleft,
change_value, insert_left, offright,
delete, insert_right, position,
del_lett, isfirst, present,
delete_right, islast, retum,
duplicate, i_th, start,
empty, last, value,
finish, merge_left, wipe_out,
first, merge_right

inherit

LINKED_LIST[STRING]
redefine present

feature

del left 5

do

position:=position - 1;
nb_elements:=nb_elements - 1;
end;

present (x:STRING):BOCLEAN i
— tell whether the string x is present in the symbol_list
local
ZINTEGER,;
do
from z:= position;
start;
until offright or x.same_as(value)
loop forth;
end; - {rom-loop
it (not offright) then
Result:= TRUE;
else Result:= FALSE;
end; - if-else
go(z);
end; — {eature present

end; - class SYMBOL_LIST

class REC?

inherit STD_FILES

feature
g:GRAMMAR; — input grammar
infile:FILE;
als,LINKED_LIST[STATE_SET); — list of all state sets
next:STRING; — next input symbol
cs:STATE; - current state
css:STATE_SET, — current slate set
nss:STATE_SET, - next state set
s1:STATE, — first state
ss1:STATE_SET; — lirst state set
Iss:STATE_SET; - lambda-rule state set
1ss:STATE_SET; — recursive state set
c_rhs:SYMBOL_LIST; - current right hand side
t:STRING is "@@@"; - teminator symbol
halt:BOOLEAN; ~ indicates efror

Initialize is

local
g_file:FILE;
add:BOOLEAN;

51

do
output.putstring(“Initializing..."); new_fine;
g_file.Create("grammar.store”);
litg_file.exists and g_file.readable) then
g.Create,
g:=g.retrieve("grammar.store”);
infile.Create("z.input");
if (infile.exists and infile.readable) then
infile.open_read,
als.Create; - allocate all states
ss1.Creale; — create first state set
add:=ss1.add_state(1,1,11,1); - create initial state
als.insert_right(ss1); —~ insert first state set
nss.Creale, - allocate next state sel
Iss.Create;
rss.Create;
next.Creale(10);
else output.putstring(*FATAL ERROR: cannot read input file®);
new_line;
halt:=TRUE;
end; —~if
end; - intialize
Create is
local
kINTEGER;
tss:STATE_SET;
do
inttialize;

if(not halt) then
output.putstring(“Processing..."); new_line;

end
end;

from
until
loop

end;

als.start;

als.offright or else als.value.isfinal or else halt

next:=get_next;

css.Clone(als.value);

nss.wipe_out;

Iss.wipe_out;

rss.wipe_out;

from css.start;

until css.offright or halt

loop cs.Clone(css.value);
c_rhs.Clone(g.r.i_th(cs.Ip).rhs.i_th{cs.p));
operate;
css.forth;

end; - loop

it (not halt) then
¢ss.stan;
nss.start;
als.change_value{css.duplicate(css.nb_elements));
if (nss.nb_elements /= 0) then

als.insert_right(nss.duplicate(ncc.nb_elements));

end; -if

and; —if

als.forth;

- 'oop

il (als.offright or hatt) then

else

end;
-if

output.putstring(* ERROR: invalid input siring”);
new_line;

output.putstring(*"DONE: string is valid.");
new_line;

~if

— feature Create

get_next:STRING s

local
temp:CHARACTER; - temporary variables
1_sIrSTRING;
done:BOOLEAN;
do
t_str.Create(30);
from temp:= infile.getchar — skip whit space
until infile.end_of_file or temp /= \n' and temp /= "\t and lemp /= " and temp /=""
loop temp:=infile.getchar; - temp <> whitespace
end; ~ loop
from - get non-blank token
until infile.end_of_file or temp = n’ ortemp = "\’ or temp = \r' ortemp ="
loop t_str.string_char(temp);
temp:=infile.getchar;
end; - loop
it (infile.end_of_file and t_str.length = 0) then
Result= (@@@");
else Result.Clone(t_str);
end;
end; - get_next
operate is

- test o see if we need lo scan, predict or complete and call appropriate feature
do

it (cs.dot > c_rhs.nb_elements or else c_rhs.nb_elements = 0) then
complete; — if the dot's at the end
elsif (¢_rhs.i_th(cs.dot).entry(1) /= "< or else c_rhs.i_th(cs.dot).entry(c_rhs.i_th(cs.dot) length} /= ">

orelse ¢ _rhs.i_th(cs.dot)length < 3) then - . non-terminal
scan;
else il (not rss.there(cs)) then
predict;
end;
end; -—if
end; - feature operate
scan is
— apply scanner to current state
local
tstate:STATE;
1s:STATE;
i'BOOLEAN;
do
if (c_rhs.i_th(cs.dot).same_as(next)} then — if (terminal = next)
i= nss.add_state(cs.Ip.cs.fp,cs.dot+1,cs.Jook,cs.point);
end;
end; - feature scan
predict is
~ apply predictor to current state
local
tstr:STRING; tstate, 1s:STATE;
t_altLINKED_LIST[SYMBOL_LIST]; t_list:SYMBOL_LIST;
i, [INTEGER; add, done:BOOLEAN;
do
tstr.Clone(c_rhs.i_th{cs.dot}); — the non-terminal to the right of dot

if (tstr.same_as(g r.i_th(cs.Ip) Ihs)) then
add:=rss.add_state{cs.lp,cs.rp,cs.dot,cs look,cs.point},

end; it

gr.go_find(tstr);

il (g.r.offright) then

output putstring("ERROR: no alternatives found for non-terminal®); new_line;
halt:=TRUE;

else t_alt.Clone{g.r.value.rhs); ~ a linked list of rh sides
from t_altstar;
untl t_alt.offright
loop from =i,
done:=FALSE;
unti done
loop done:=TRUE;

if (cs.dot+j > c_rhs.nb_elements) then - non-term is last _
add:=css.add_state(g.r.position,t_alt position, 1,cs.look.als.position);
olsif (c_rhs.i_th(cs.dot+j).entry(1) /= '<' or
¢_rhs.i_th(cs.dat_j).entry(c_rhs.i_th{cs.dot_j)Jength) /= > or
¢_rhs.i_th(cs.dot_j)length < 3)then - it's a lerminal
add:= css.add_state(g.r.position, t_akpasition,1, c_rhs.i_th(cs.dot+j),als.position);
else tstr.Clone(c_rhs.i_th{cs.dot+j)); - non-term . non-term , use firsts
g.r.mark;
g.r.go_find(tstr);
t_list Clone(g.r.value.ist);
g.r.return;
from Ulist.slart;
until t_list.offright
loop if (not t_lisl.value.same_as("<lambda>")) then
add:=css.add_state(g.r position, t_alt.position,1, t_list.value, als.position);
if (add and not Iss.empty and not {_alt.value.empty) then

check_lambda;
end;
else done:=FALSE;
f=j+1,
end; - it-else
t_list.forth;
end; - lrom
end; - il-elsif-else
end; - loop
t_alt forth;
end; - loop
end; ~if
end; — feature predict
complete is
- apply completer to current state
local
d,lr, i, jiINTEGER; ts2, ts:STATE;
str:STRING; add:BOOLEAN;
do

il (cs.look.same_as(next)} then
it (not f.r.i_th{cs.Ip).rhs.i_th{cs.1p).empty) then

from als.mark;
als.go(cs.point);
als.value.stan;
until ais.value.offright
loop d:=als.value.value.dol;
|:=als.value.value.lp;
r:=als.value.value.mp;
if (d <= g.r.i_th({l).rhs.i_th{r).nb_elements) then
if (g.r.i_th{cs.lp).lhs.same_as(g.r.i_th{l).rhs.i_th(r).i_th(d)}) then
add:=css.add_state(l, r, d+1, als.value.value.look, als.value.value point),
il (d+1<= g.r.i_th(l).rhs.i_th{r).nb_elements) then
str.Clone(g.r.i_th(l).ths.i_th(r).i_th(d+1));
if (str.entry(1} = '<’ and str.entry(str.length) = ‘>' and
str.length > 2 and not str.same_as("lambda>") then
check_lambda;
end;
end;

93

end; -it

end; —if
als.value.forth;

end; -loop

als.return;

olse from add:alss.add_state(cs.lp, cs.ip, cs.dot, cs.look, cs.point);

j=css.position;
css.start;

untl css.offright

loop d:=css.value.dot;
I:=css.value.lp;
r=css.value.rp;

if (d <= g.r.i_th({l_.rths.i_th(r).nb_elements) then
if (g.r.i_th{cs.lp).lhs.same_as(g.r.i_th(l).rhs.i_th(r).i_th(d})) then
add:=css.add_state(l, r, d+1, css.value.look, css.value point);
it (d+1 <= g.r.i_th{l).ths.i_th{r).nb_elements) then
str.Clone(f.r.i_th(l).rhs.i_th{r).i_th(d+1}));
if (str.entry(1) = "< and str.entry(strlength) = '>" and
sir.length > 2 and not str.same_as("<lambda>")) then

check_lambda;
end; —it
end; —if
end; -it
end; - if
css.forth;
end; -loop
- css.go(j);
end; i
end; it
end; - feature complete
check_lambda &

- check to see if the state being added has one of the lambda rules to the right of the dot
- it it does, add a new state in the same manner thal the completer does

— note that this must be recursive, because there can be nested lambdas

local str:STRING;

x, Z.INTEGER;
add:BOOLEAN;
do
from z:=css.position;
css.finish;
x=0;

until x = css.nb_elements
loop x:=css.nb_elements
from lss.stant;
until Iss.offright — "complete” and check_lambda
loop if (g.r.i_th(lss.value lp).lhs.same_as(g.r.i_th{css.value.ip).rhs.i_th{css.value.mp.i_th{css.value.dot})) then
add:=css.add_state(css.value.Ip, css.value.rp, css.value.dol+1, css.value.look, css.value point);
if (css.value.dot+1 <= g.ri_th(css.value.lp).rhs.i_th(css.value.ip).nb_elements) then
str.Clone(g.r.i_th(css.value.Ip).ths.i_th{css.value.mp).i_th{css.value.dot+1));
if (str.entry(1) = '<' and str.entry(str.length) = >' and sir.length > 2 and
not str.same_as("<lambda>")) then

check_lambda;
end; -it
end; —if
end; ~if
Iss.forth;
end; - loop

end; -loop
€ss.90(2);

end; - feature check_lambda
end; - class REC2

o4

class STATE_SET
— A STATE_SET represents a state set in Earley’s Algorithm.
— ltis a finked list of STATES to be processed in order.

export
add_state, isfinal, offright,
back, isfirst, present,
duplicate, islast, position,
empty, i_th, retum,
finish, last, start,
first, mark, value,
forth, nb_elements, wipe_out,
go. offieft, there

inherit
LINKED_LIST[STATE]

redefine present
feature

there(s:STATE) :BOOLEAN 5

local

ZINTEGER,; done:BOOLEAN;
do
from z:=position;

slar;

unti olfright or else done
loop i (value.lp = s.Ip and then value.rp = s.ip and then value.dot = s.dot and then value.point = s point) then

done:=TRUE;
else forth;
end; - il-else
end; —loop
it (done) then
Result:=TRUE;
else Result:=FALSE;
end; —il-else
9o(z);
end; — feature there

add_state(ij,kINTEGER,I:STRING,p:INTEGER) :BOOLEAN is
local ts tstate:STATE;
ZINTEGER,;
do
tstate.Create(i,j,k.Lp);
il (not present {tstate)) then
Z:= position;
finish;
ts.Clone(tstate);
insert_right(ts);
go(z);
Result:=TRUE;
else Result:=FALSE:
end;
end;

present (s:STATE):BOOLEAN [3
~ tells whether s is present in the state set

local
ZINTEGER,;
done:BOOLEAN;

do

from z:=position;
start;

unti offright or else done
loop if (valuelp = s.Ip and then value.rp = s.rp and then value.dol = s.dot and then
value.look.same_as(s.look) and then value point = s.point) then

done:=TRUE;
else forth;
end; - if-else
end; -loop
il (done) then
Result:=TRUE;
else Result:=FALSE;
end; - if-else
go(z);
end; — feature present

isfinal.BOOLEAN &
- tells if the state set is final

do
if(nb_elements = 1 and then first.lp = 1 and then first.rp = 1 and then first.dot = 3 and then
first lokk.same_as("@@@") and then first paint = 1) then
Result:=TRUE;
else Result:=FALSE;
end; — if-else
end; - {eature isfinal

end; - class STATE_SET

class STATE

— A STATE represents a state in Earley’s Algorithm. A state in Earley’s Algorithm consists of a
-~ production rule with a dot positioned in the right hand side (rhs) of the rule, a look-ahead

- siring, and a pointer (o a state set

- Ip is an integer pointer to the left hand side (Ihs) of a production

- rule in the input grammar

- 1p is an integer pointer to a rhs associated with the above lhs

- dot indicates the position of the dot in the rhs

- look is the look-ahead string

- point is the pointer to a state sel

export
Ip, - ths of state
P, — ths of state
dot, — position of dot in state
look, — look-ahead string
point — pointer to state set
feature
Ip, 1p, dot, point:INTEGER,;
look:STRING;

Create(i:INTEGER, jINTEGER, k:INTEGER, s:STRING, IINTEGER) s
do

Ip:=i;
=),
dot:=k;
look.Create(30);
point:al;
end; ~ feature Create

end; - class STATE

APPENDIX C -- Input Grammars

The following grammars are those which describe subsets of the Basis programming
language.

003
<parse> = <sllist>
<stlist> = <sllist> <stmt>
<stmt> = name = pame
= integer name
D10
<parse> = «stlist>
<stlist> = cstlist> <stmt> <eos>
< 05> =
<simt> = «<id> = <phmitive>
= dype> name
dype> = inleger
<primitive> = <d>
<id> = name
L1253
<parse> = <silist>
<stlist> = osllist> <stmt> <eos>
<eos> =
<stmt> = <id> = <primitive>
= <ype> name
<type> z= integer
= real
= bglcal
x= complex
o= chameleon
= character
<primitive> = <id>
<id> = name
£.190
<parse> = <stlist>
<stlist> = <stlist> <stmt> <eos>
<20S5> = ;
<stmt> = <id> = <exp>
= ype> name
dype> = integer

<exp> = <exp> + <terms>
b <exp> - <lerm>
= - lerm>

= + <term>
= dem>
derm> = <id>
<id> = name
b20
<parse> = osllist>
<stlist> = «sllist> <stml> <eos>
<605> =
<stmt> = <id> = <exp>
t= <ype> name
ype> = integer
= real
o= Ioglcal
1= complex
== chameleon
v= character
<exp> = <exp> + <lerm>
= <exp> - <term>
= - <lerm>
= + <lerm>
o= derm>
<term> = <id>
<id> = name
b.22
<parse> i= stlist>
<stlist> = osllist> <stmt> <eos>
<805> = y
<stmt> = <assign>
= <mise>
<assign> = <id> = <exp>
<misc> = dype> name
<lype> i= integer
= real
= Ioglcal
w= complex
w= chameleon
o character
<exp> = <exp> + <lerm>
= <exp> - <lerm>
= - <ferm>
= + <lerm>
= ermm>
<term> = <id>
<d> = name
b.27
<parse> = «sllist>
<stlist> = <stlist> <stmt> <eos>

<e05> =

<stmt> = cassign>

T cmiso
<assign> = <id> = <exp>
<misc> = dype> <varlisl>
<type> = integer
= real
= logical
= complex
z= chameleon
z= character
<varlist> = <dname> <vals>
= <varist> , <dname> <valss>
<dname> = name
<vals> = = <exp>
<exp> = <exp> + <lerm>
= <exp> - <terms>
= - <term>
= + <lerm>
U= erm>
derm> = <id>
<id> “= name
034
" <parse> = «sllist>
<stlist> = csllist> <stmt> <eos>
<e0S> = X
<stmt> t= <assign>
= <misc>
<assign> = <id> = <exp>
<misc> = dype> cvarlist>
<type> = integer
= real
= logical
i= complex
z= chameleon
©= character
<varlist> = <dname> <vals>
= «varist> , <dname> <vals>
<dname> = name
<vals> = = <exp>
<exp> = <exp> + <lerm>
- <exp> - <lerm>
= - <term>
=+ <lerm>
= <term>
<term> = demm> “ <primry>
= <term> / <primry>
= <prnmry>
<primry> = <lactors ** <factor>
= <factor>
<factor> Y= <primitive>
= (<exp>)
<primitive> = <d>

<id> = name

b4l

<parse> = csllist>
<slist> = stlist> <stmt> <eos>
<805> -
<stmt> = <assign>

= <anise
<assign> = <id> = <lexp>
<misc> = <ype> «varlist>
dype> = integer

= red

z= logical

z= complex

3= chameleon

z= character
<varlist> = <dname> <vals>

= <varlist> | <dname> <vals>
<dname> = name
<vals> = = <lexp>
<lexp> = <eXp> < <exp>

I= <exp> <= <exp>
= <exp> > <exp>
= <exXp> >= <exp>
= <exp> = <exp>
= <@Xp> <> <exp>

= <exp>
<exp> = <exp> + <lem>
= <exp> - <terms>
= - <term>
= + <term>
= term>
<term> = dem> ' <primry>
= derm> / <primry>
= <prmry>
<primry> = <fadtors ** <factor>
= <factor>
<factor> = <pnmitive>
= (<lexp>)
<primitive> = <id>
<id> = name
b.a8
<parse> = «stlist>
<stlist> 1= «stlist> <stmt> <eos>
<@0s> =
<stmt> = <assign>
= <misc>
= <pbt>
<assign> = dd> = <exp>
<misc> = dype> «varlist>
<type> = integer
= real
:: logical
z= complex
z= chameleon

= character

<varlist>

<dname>
«vals>

<plot>

<scale>

<label>

<exp>

<lerm>

<primry>
<factor>

<primitive>
<id>

0.5%

<parse>
<stlist>

<eQs>
<stmt>

<assign>
<misc>
ype>

<varlisi>

<dname>
<vals>

<plot>

T S T T S D U R N A N T A T " O T TR T TR

<dname> <vals>

<varlisl> , <dname> <vals>
name

= <OXp>

plot <scale> <exp> , <exp> <label>

plot <scale> <exp> , <exp> ,
plot <scale> <exp> , <exp>
plot <scale> <exp> <label>
ploim <scale> <exp> , <exp>
finlin

finlog

loglin

loglog

equal

@ <exp>

<exp> + <term>

<exp> - <term>

- <lerm>

+ <term>

<erm>

<term> * <primry>
erm> / <primry>
<primry>
<lactor>
<lactor>
<primitive>
(<exp>)
<id>

name

.

<factor>

<stlist>
<stlist> <stmt> <eos>

<assign>
<misc>
<plot>

<id> = <lexp>
<type> <varlist>
integer

real

logical

complex
chameleon
character
<dname> <vals>
<varlist> , <dname> <vals>
name

= <lexp>

<exp> <label>

, <8Xp> , <exp>

, <exp>

plot <scale> <exp> , <exp> <label>

plot <scale> <exp> , <exp> ,
plot <scale> <exp> , <exp>
plot <scale> <exp> <label>
plotm <scale> <exp> , <exp>

<exp> <label>

, <exp> , <exp>

, <exp>

61

<scale>

<label>

<lexp>

<exp>

derm>

<primry>
<factor>

<primitive>
<id>

D.233

<parse>
<stlist>

<nonnullstlist>
<€0s>

<simplestmt>

<structstmt>

<nonnullstmt>

<stmt>

<luncspec>
<funcdes>

<paramlist>

<dostmi>

W

@ <exp>

<@Xp> < <exp>
<exp> <= <exp>
<exp> > <exp>
<@xp> >= <exp>
<exp> = <exp>
<@xp> <> <exp>
<exp>

<exp> + <term>
<@xp> - <term>

- <lerm>

+ <lerm>

term>

demm> * <primry>
derm> / <primry>
<primry>
<factor>
<factor>
<primitive>
(<lexp>)
<id>
name

e

<factor>

<stlist>
<stlist> <stmt> <eos>

<nonnullstmt> <eos> <stlist>
semicolon

o

<assign>
dist>
<display>
<misc>
<plot>
<dostmt>
<forstmt>
<whilestmt>
<ifstmt>
<simplestmt>
<structstmt>

<funcspec>

<nonnullstmt>

{}

whitespace
A

functions <funcdes> <eas> <stlist> endt
name

reference (<paramlist>)

name

<paramlist> , name

do <id> = <dorange> <eos> <sllist> enddo
do <eos> <stlist> <docontrol>

<dorange>
«first>
<last>
<incr>
<docontrol>

<lorstmt>
<lorinit>

<forout>
<assignlist>

<lstmt>
<cstmt>

<whilestmt>
<whilexp>
<ifstmt>

<ilexp>
lalt>

henlist>

<oplelse>

<alt2>

<misc>

<SCope>

dirst> , <last> <incr>

o>

<exp>

, <exp>

enddo

until { <lexp>)

for (<forinit> , <forout> , <tstmt>) <stlist> endfor
<assignlist>

<lexp>

<assign>

<assignlist> <eos> <assign>
<cstml>

<stmt>

<cstmt> <eos> <stmt>

while <whilexp> <stlist> endwhile
(<lexp>)

i <ifexp> <lalt>

if <itexp> <thenlist> <optelse> endit
(<lexp>)

<@0s> <nonnullstmt>
<nonnullstmt>

<e0s> then <stlist>

then <stlist>

ekse <stlist>

elsif <ifexp> <alt2> <optelse>

<nonnullstlist>
<60s> <nonnullstlist>
<eos> then <stlist>
then <stlist>

remark <exp>

box name

tv <exp>

tv

tek <exp>

tek

package name

fun <runspec>
generate <genspec>
step <runspec>
finish <finspec>

read <filename>
forget <forgetlist>
forget

push <pkg>

pop

timef <exp>

output to <filename>
save lo <filename>
save <savelist>

call <id>

call <rid> <args>
<id> command <comlist>
<scope> <lype> <varlist>
break <optlevel>
next <optlevel>
<indevice> <inlist>
<outdevice> <outlist>
return <optvab>
global

63

<indevice>

<outdevice>

<outlist>

<infist>

<assign>
<ths>

dist>

<plot>

<optlevel>

<level>

<runspec>
<genspec>
<linspec>
<flag>

<count>

<varlist>
<display>

<savelist>

<forgetlist>
<dvar>

<gname>

<vals>
<ditem>

<listspec>

<exp>
<exp>

plot

<< <lexp>

<< fetum

<outlist> << <lexp>
<outlist> << returmn
> <lhs>

>> retum

<inlist> >> <lhs>
<inlist> >> retum
<hs> = <lexp>
<id>

tid> <args>

list

list <listspec>

plot <scale> <exp>
plot <scale> <exp>
plot <scale> <exp>
plot <scale> <exp>

plotm <scale> <exp> , <exp>

<level>

integer-constant
hex-constant
octal-constant
{integer-constant }
{ hex-constant)

(octal-constant)

, <exp> <label>

, <exp> , <exp> <label>
, <@Xp> , <exp> , <exp>
<label>

. <exp>

<pkg> <flag> <count>

<pkg> <flag>
<pkg> <llag>

plolonly
plot
noplot

integer-constant
hex-constant
octal-constant
<dvar> <vais>
<varlist>
<ditem>
<display , <ditem>

<sitem>
<savelist> , <sitem>
<dname>

, <dvar> <vals>

<forgellist> , <dname>

<dname>
<dname> <args>
name

reference

" <exp> '

= <lexp>

<exp>

<group>

distelts

distspec> , <histelt>
distspec> <listelt>

<istelt>

<optval>

ype>

<sitem>

<scale>

<label>
<explist>
<lexp>

<fterm>

<lprimary>

<lfactor>

<exp>

erm>

<primry>

WoORW W W W W W W

variables
groups
packages
functions
<id>

<group>
<lexp>

nteger
real

logical
complex
chameleon
character “ <exp>
character
indirect
<id>
<group>
linlin

linlog

loglin
loglog
equal

@ <exp>

<lexp>

<explist> , <lexp>

<exp> | <ferm>
<ferms>

<ferm> & <lprimary>
<primary>

~ <lfactor>

<lfactor>

<exp> < <exp>

<exp> <= <exp>

<exp> > <exp>

<exp> >= <exp>

<exp> = <exp>

<@Xp> == <exp>

<eXp> <> <exp>

<exp> ~= <exp>

<exp> ? [<exp> , <exp> |
<exp> ?[<exp> , <exp>)
<exp> ? (<exp>, <exp> |
<exp> ? (<exp> , <exp>)
<exp>

<exp> + <term>

<exp> - <lem>

- <lerm>

+ <lerm>

term>

erm> * <primry>
<erm> ° ! <primry>
erm> / <primry>
derm> | <primry>
dem> // <primry>
derm> / | <primry>
<primry>

<factor> ** <factor>
<lactor>

<factor> = <primitive>

<fador> <args>

= <facton>'

n= [<explist>]

= { <lexp>)
<args> = (<arglist>)
<arglist> = <argitem>

= <argitems, <arglist>
<comlist> 1= <comitem>

= <comilem> , <comlist>
z= <comitem> whitespace <comlist>

<comitem> = <filename>
<filename> = fcomstr

= <argitem>
<argitem> = <dexp>

= & <id>

& <nd> <args>
= <dexp> : <dexp>
<dexp> =

= <lexp>
<primitive> = «<id>

1= «rid> <args>

: slring

z= real-constant

v= complex-constant

z= integer-constant

z= hex-constant
octal-constant
name
name . name
reference
: name . reference
<group> w= Groupname

z= name . Groupname
<pkg> = name

biexp

<parse> = dexp>

<lexp> = <exp> | <ferm>
= <flerm>

<lterm> 1= <ferm> & <lprimary>
= <lprimary>

<lprimary> =~ <Mactor>
= «factor>

<lfactor> = <exp> < <exp>
= <eXp> <= <exp>
= <exp> > <exp>
= <exp> >= <exp>
I= <exp> = <exp>
o= <exp> <> <exp>
= <exp>

<exp> = <exp> + <term>
u= <exp> - <term>
= - <tlerm>
= + <term>
= <term>

dem> = dem> * <primry>
= dem> / <primry>
= <primry>

<primry> = dador> ** <factor>
i= <lador>

<id>

<rid>

<lactor>

<primitive>

<parse>

<exp>

term:

<primry>

<lactor>

<primitive>

<primitive>
(<lexp>)
name

<exp>

<exp> + <lerm>
- <term>

<exp>
- <tlerm>
+ <term>
<lerm>
erm>

<pnmry>

<term> / <primry>

<primry>
<lactor>

<lactor>

<primitive>
(<exp>)

name

* <factor>

The following grammars are those which describe subsets of the Eiffel programming
language. The complete Eiffel grammar, €.227, was converted to this notation from the
grammar shown in [13].

€.025
<class_declaration>

<class_header>
<class_name>
<formal_generics>
<feature_name>
<exports>
<parents>

dype>

<leatures>
<feature_declaration _list>
<feal_decl>
<feature_declaration>
<formal_arguments>
<type_mark>

<fealure_value_mark>

<leature_value>
<constant>

<class_invariant> =

<class_header> <formal_generics> <exports> <parents>
<leatures> <class_invariant> end

class <class_name>

identifier

identifier

INTEGER
REAL

{eature <feature_declaration_list>

<feat_dedl>

<feature_declaration>

<feat_decl> ; <feature_declaration>

<feature_name> <formal_arguments> <type_mark> <feature_value_mark>

: <type>

is <feature_value>
<constant>
integer

real

220
<class_declaration>

<class_header>
<deferred_mark>

<class_name>
<lormal_generics>
<leature_name>

<exports>
<parents>

dype>

<leatures>
<leature_declaration_list>
<feal_decl>

<leature_declaration>
<formal_arguments>

<entity_declaration_list>
<ent_decl_list>

<entity_declaration_group>
<id_list>

ype_mark>
<feature_value_mark>
<leature_value>

<constant>

<integer_consant>
<sign>

<character_constant>
<boolean_constant>

<real_constant>
<string_constant>

<routine>
<class_invariant>

2100
<class_declaration>

<class_header>
«deferred_mark>

<class_name>

:“: :“: :l:

<class_header> <formal_generics> <exporis> <parents>
<fealures> <class_invariant> end
<delerred_marlo dass <class_name>

delermed
identifier

identifier

INTEGER
BOOLEAN
CHARACTER
REAL

feature <feature_declaration_list>

<feat_decl>

<feature_declaration>

<leal_decl> ; <feature_declaration>

<fealure_name> <formal_arguments> <type_mark> <feature_value_mark>

(<entity_declaration_list>)

<ent_decl_list>

<entity_declaration_group>

<ent_decl_list> ; <entity_declaration_group>
<id_list> : <type>

identifier

<id_list> , identifier

: <type>

is <leature_value>
<constant>

<routine>
<integer_constant>
<charader_constant>
<boolean_constant>
<teal_constant>
<slring_constant>
<sign> integer

* character’
true

false
<sign> real
* string *

<class_header> <tormal_generics> <exporis> <parents>
<features> <class_invariant> end
<defemmed_mark> class <class_name>

deferred
identifier

<lormal_generics> =

= [<formal_generic_list> |
<lormal_generic_list>

= <f_gen_list>
<I_gen_list> z= <formal_generic>

= <f_gen_list>, <lormal_generic>
<formal_generic> w= <formal_generic_name> <constraint>
<formal_generic_name> u= identifier
<constraint> - =

1= -><class_type>
<exporis> =

z= expor <export_list>
<export_list> =

= <ex_list>
<ex_list> = <export_item>

= <ex_list> , <export_item>
<expori_item> = <fealure_name> <export_restriction>
<leature_name> = identifier
<export_reslriction> =

= {<class_list> }
<class_list> =

= <c_list>
<c_list> 1= <class_name>

m= <C_list>, <class_name>
<parents> =

: inherit <parent_list>
<parent_list> =

= <p_fist>
<p_list> = <parent>

i= <p_list> ; <parent>
<parent> m= «class_type> <rename_clause> <redefine_clause>
<class_type> m= <class_name> <actual_generics>
<actual generics> =

= [<type_list>]
dype_list> =

= < _lish
< _list> = <lype>

= <_list>, <type>
dype> == INTEGER

z= BOOLEAN

z= CHARACTER

= REAL

= <tlass_type>

i= <formal_generic_name>

“= <assosciafion>
<association> %= like <anchor>
<anchor> m= clealure_name>

w= Current

<rename_clause> u=
I= <rename <rename_list>

<rename_list> =

= <ren_list>
<ren_list> Z= <rename_pair>

m= «fen_list>, <rename_pair>
<rename_pair> i= <leature_name> as <leature_name>

<redefine_clause> =

w= redefine <feature_list>
<leature_list> i=

= <feat_list>
<leat_list> i= <feature_name>

u= <leat_list> , <feature_name>
<features> =

w= leature <feature_declaration_list>

<lealure_declaration_list> =

= <fea_ded>
<feal_decl> = <leature_declaration>

m= <leat_decl> ; <leature_declaration>
<leature_declaration> z= <leature_name> <formal_arguments> <type_mark> <leature_value_mark>
<lormal_arguments> =

i= (<enlity_dedlaration_list>)
<enlity_declaration_hst> =

1= <ent_decl_list>
<ent_dec! _list> z= <enlity_declaration_group>
o= <enl_decl_list> ; <entilty_declaration_group>
<entity_declaration_group> = «id_list> : <lype>
<id_list> o= identifier
z= «<id_list> , identifier
dype_mark> t= <types

<feature_value_mark> =
t= is <feature_value>
<leature_value> t= <constanl>
<constant> I= <integer_constant>
z= <character_constant>
©= <boolean_constant>
s= <real_constant>
i= <slring_constant>

<integer_consant> = <sign> integer
<sign> =
<character_constant> z= 'character’
<boolean_constant> = lrue

= lalse
<feal_constant> i= <sign> real
<string_constant> o= "string*
<class_invariant> =
2130
<class_declaration> = <class_header> <formal_generics> <exports> <parents>

<features> <class_invariant> end
<class_header> = <delferred_mark> class <class_name>
«deferred_mark> =
o= deferred

<class_name> = identifier

<lormal_generics> =

= [<formal_generic_list>]
<formal_generic_list> =

= <l_gen_list>

<i_gen_list> = <formal_generic>

= <i_gen_list> , <lormal_generic>
<formal_generic> = <formal_generic_name> <constraint>
<formal_generic_name> = identifier
<constraint> =

= -> <class_type>
<exports> =

= export <export_list>
<export_list> i=

= <ex_list>
<ex_list> = <export_item>

= <ex_list> , <export_itlem>
<export_item> = <leature_name> <export_restriction>
<leature_name> = identifier

<export_restriction> =
= { <class_list> }

<class_list>

=

= <c_list>
<c_list> = <class_name>

= <c_list> , <class_name>
<parents> o

= inherit <parent_lisl>
<parent_list> m

= <p_list>
<p_list> = <parent>

= <p_list> ; <parent>
<parent> = <class_type> <rename_clause> <redefine_clause>
<class_type> = <class_name> <actual generics>
<actual_generics> =

= [<type_list>]
dype_list> =

= _list>
o_list> = ype>

= <_list> , <type>
ype> = INTEGER

= BOOLEAN

= CHARACTER

= REAL

= <class_type>

= <lormal_generic_name>

= <assosciation>
<association> l= like <anchor>
<anchor> = <leature_name>

= Current
<rename_clause> =

= <rename <rename_list>
<rename_list> =

i= <ren_list>
<ren_list> = <fename_pair>

= <ren_list> , <rename_pair>
<fename_pair> = <leature_name> as <leature_name>
<redefine_clause> i=

= redefine <leature_list>
leature_list> =

= <feat_list>
<feat_list> = <leature_name>

= <leat_list> , <feature_name>
<leatures> =

= feature <feature_declaration_list>
<leature_declaration_list> =

= <leat_decl>
<feat_decl> = <leature_declaration>

= <feat_dedl> ; <leature_declaration>
<feature_declaration> = <leature_name> <formal_arguments> <type_mark> <feature_value_mark>
<formal_arguments> =

= { <entity_declaration_list>)
<enlity_declaration_list> =

= <ent_dec!_list>
<ent_dec!_list> = <entilty_declaration_group>

= <enl_decl_list> ; <entity_declaration_group>
<enlity_declaralion_group> = <id_list> : <type>
<id_list> = identifier

= <id_lists , identifier
<ype_mark> = > <lype>

<feature_value_mark> =

= is <leature_value>
<feature_value> = <constant>

= <routine>

constant>

<integer_consant>
<sign>

<character_constant>
<boolean_constant>

<feal_constant>
<string_constant>
<routine>

<precondition>
<assertion>

<assert_list>

<assertion_clause>
<tag_mark>

tag>
<unlabeled_assertion_clause>

<boolean_expression>
<comment>
<externals>

<ext_decl>
<external_declaration>

<language>
<exlernal_name>

<local_variables>

<body>
<full_body>
<normal_body>
<compound>

<comp_list>

<inslruction>

<assignment>
<entity>

<expression>

<debug>
<check>

<retry>
<postcondition>
<rescue>
<class_invariant>

WU W W W W

I“: :": :":

<integer_constant>
«<character_constant>
<boolean_constant>
«<real_constant>
«<string_constant>
<sign> integer

+

' charadter *
true

false
<sign> real
L} aring L}

<precondition> <externals> <local_variables> <body>

<postcondtion> <rescue> end

<assert_list>
<asserlion_clause>

<assert_list> ; <assertion_clause>
<tag_mark> <unlabeled_assertion_clause>

«ag> :

identifier
<boolean_expression>
<comment>
<expression>

— string

<ext_decl>
<extemnal_declaration>

<ext_dedl> ; <external declaration>
<leature_name> <formal_arguments> <type mark>

<exiernal_name> <language>
language «<string_constant>

name <string_constant>

local <entity_declaration_list>
<full_body>

<normal_body>

do <compound>

<comp_list>

<instruction>

<comp_list> ; <instruction>
<assignment>

<check>

<fetry>

<debug>

<entity> := <expression>
identifier

Resutt

<constant>

<entity>

debug <compound> end
check <assertion> end

retry

£.200
<class_declaration>

<class_header>
<deferred_mark>

«<class_name>
<lormal_generics>

<lormal_generic_list>
<f_gen_fist>
<formal_generic>
<formal_generic_name>
<constraint>
<exports>
<export_list>
<ex_list>
<export_item>
<feature_name>
<export_restriction>
<class_list>

<c_list>

<parents>
<parent_list>
<p_list>

<parent>
«class_type>
<actual_generics>
<ype_list>

< _list>

<type>

<association>
<anchor>

<rename_clause>
<rename_list>
<ren_list>

<fename_pair>

:": :.: :.l

:": :“: :u:

WO

I S

73

«class_header> <formal_ganerics> <exports> <parents>
<lealures> <class_invariant> end
«deferred_mark> class <class_name>

delerred
identifier

| <formal_generic_list>]

<t _gen_list>

<formal_generic>

<t _gen_list> , <formal_generic>
<formal_generic_name> <constraint>
identifier

-> <class_type>
export <export_list>

<ex_list>

<export_item>

<ex_list> , <export_item>
<leature_name> <export_restriction>
identifier

{ <class_list> }

<c_list>
<class_name>
<c_list> , <class_name>

inherit <parent_list>

<p_list>

<parent>

<p_list> ; <parent>

<class_type> <rename_clause> <redefine_clause>
<class_name> <aclual_generics>

[<type_list> |

_list>

dype>

d_list> , <type>
INTEGER
BOOLEAN
CHARACTER
REAL
<class_type>
<formal_generic_name>
<assosciation>
like <anchor>
<leature_name>
Current

rename <rename_list>

<ren_list>

<fename_pair>

<ren_list> , <rename_pair>
<feature_name> as <fealure_name>

<redefine_clause>

- redefine <fealure_list>
<leature_list> =

= <feat_list>
<leat_list> = <feature_name>

= <feal_list> , <fealure_name>
<features> =

= feature <feature_declaration_list>
<leature_declaration_list> =

= <eat_dect>
<feat_decl> U= <leature_declaration>

= <leat_dedl> ; <feature_declaration>
<feature_declaration> = <leature_name> <lormal_arguments> <lype_mark> <fealure_value_mark>
<formal_arguments> =

= (<entity_declaration_list>)
<enlity_declaration_list> i=

= <ent_dec|_list>
<ent_decl_list> = <entity_declaration_group>

= <ent_decl_list> ; <entity_declaration_group>
<entity_declaration_group> = <id_list> : <type>
<id_list> i= identifier

= <id_list> , identifier
«type_mark> = s <lype>
<leature_value_mark> =

= s <leature_value>
<feature_value> = <constant>

= <routine>
<constant> = <integer_constant>

= <character_constant>

= <boolean_constant>

= <real_conslant>

= <siring_constant>
<integer_consant> : = <sign> integer
<sign> =

= +
<character_constant> = ' character
<boolean_constant> = true

= false
<real_constant> = <sign> real
<string_constant> vz " string
<routine> = <precondition> <externals> <local_variables> <body>

<posicondtions <rescue> end

<precondtion> =

= require <asserion>
<assertion> =

= <assert_list>
<assert_list> = <assertion_clause>

= <assert_list> ; <assertion_clause>
<assertion_clause> = dag_mark> <unlabeled_assertion_clause>
<tag_mark> =

= ag>
dag> = identifier
<unlabeled_assertion_clause> = <boolean_expression>

= <comment>
<boolean_expression> = <expressions
<comment> = ~ string
<externals> =

= <ext_dec>
<ext_decl> = <extemal_declaration>

U= <ext_decl> ; <external_declaration>

<exiemal_declaration>

<language>
<extemnal_name>

<local_variables>
<body>
<fu||_body>
<normal_body>
<compound>

<comp_list>

<instruction>

<call>
<qualified_call>
<unqualified_call>
<actuals>
<expression_list>
<exp_list>

<separator>

<assignment>
<entity>

<expression>

<ung_exp_list>

<unqualified_expression>

<operator_expression>

<unary_expression>

<unary>

<binary_expression>

<binary>

<multiary_expression>

.h:

:u: :": '.": :": :': :.: :"1 :I:

<lealure_name> <lormal_arguments> <type_mark>
<extemal_name> <language>
language <string_constant>

name cslring_constant>

local <entity_declaration_list>
<full_body>

<normal_body>

do <compound>

<comp_list>

<instruction>

<comp_list> ; <instruction>
<call>

<assignment>

<theck>

<retry>

<debug>

<qualified_call>
<unqualified_call>
<expression> . <unqualified_call>
<leature_name> <actuals>

{ <expression_list>)

<exp_list>
<expression>
<exp_list> <separator> <expression>

<entity> ;= <expression>
identifier
Result

<unq_exp_list>
<unqualified_expression>
<unq_exp_list> . <unqualified_expression>
<constant>

<entity>
<unqualified_call>
Current
<operator_expression>
<unary_expression>
<binary_expression>
<muttiary_expression>
<parenthesized>

<unary> <expression>
not

+

<expression> <binary> <expression>
A

=
<

<=

=

div

mod

<expression>

<multiary_expression> <multiary> <expression>

<multiary> = +

- /

= and

= and then

= or

= of eise
<parenthesized> = (<expression>)
<check> = check <assertion> end
<retry> = relry
<debug> = debug <compound> end
<postcondition> =

= ansure <assertion>
<rescue> =
<class_invariant> =
£.227
«<class_declaration> = <class_header> <formal_generics> <exports> <parents>

<leatures> <class_invariant> end

<class_header> <deferred_marko class <class_name>

<deferred_mark>

WO

= deferred
<class_name> == identifier
<formal_generics> =

= [<formal_generic_list>]
<formal_generic_list> =

= <t gen_list>
<t gen_list> = <formal_generic>

= <f_gen_list> , <formal_generic>
<lormal_generic> = <formal_generic_name> <constraint>
<formal_generic_name> = identifier
<constraint> =

= -> <class_type>
<exports> =

= export <expori_list>
<export_list> =

= <ex_fist>
<ex_list> = <expor_ilem>

= <ex_list> , <export_item>
<export_item> = <feature_name> <expori_restriction>
<feature_name> = identifier
<export_restriction> =

= { <class_list> }
<class_list> =

= <c_list>
<c_list> = <class_name>

= <c_list> , <class_name>
<parenis> =

= inherit <parent_list>
<parent_list> =

= <p_list>
<p_list> = <parent>

= <p_list> ; <parent>
<parents = <class_type> <rename_clause> <redefine_clause>
<class_type> = <class_name> <actual_generics>
<adual_generics> =

N= { <type list>]
ype_list> =

= o list>
o_list> = <type>

<_list> , <type>

dype> = INTEGER

= BOOLEAN

Y- CHARACTER

- REAL

= <class_type>

- <lormal_generic_name>

- <assosciation>
<association> = like <anchor>
<anchor> = <lealure_name>

= Cument
<fename_clause> =

= <fename <rename_list>
<rename_list> =

o= <ren_list>
<ren_list> = <fename_pair>

= <ren_list> , <rename_pair>
<fename_pair> = <leature_name> as <feature_name>
<redefine_clause> =

= redefine <feature_list>
<leature_list> =

= <leal_list>
feat_list> = <lealure_name>

= <feal_list> , <feature_name>
<features> =

= leature <feature_declaration_lisi>
<feature_declaration_list> =

= <leal_decl>
<feat_decl> = <lealure_declaration>

= <feal_deci> ; <feature_dedclaration>
<leature_declaration> = <leature_name> <lormal_arguments> <type mark> <feature_value_mark>
<formal_arguments> =

= (<entity_declaration_list>)
<enlity_declaration_list> =

= <ent_decl_list>
<ent_dec|_list> = <entity_declaration_group>

= <ent_decl_list> ; <entity_declaration_group>
<enlity_declaration_group> = <d_list> : <type>
<id_list> = identifier

= <id_list> , identifier
dype_mark> = : <type>

=
<leature_value_mark> =

= is <feature_value>
feature value> = <constant>

= <routine>
<consiant> = <integer_constant>

= <character_constant>

= <boolean_constant>

= <real_constant>

= <string_constant>
<integer_consant> = <sign> integer
<sign> =

= +
<character_constant> = * character '
<boolean_constant> = true

= false
<feal_constant> = <sign> real
<string_constant> = * string *
<routine> = <precondition> <externals> <local_variables> <body>

<postcondtion> <rescue> end

<precondition>

W

= fequire <assertion>

<assertion>

"
= <assert_lisl>
<assert_list> = <assertion_clause>
m <assert_list> ; <assertion_clause>
<assertion_clause> = <ag_mark> <unlabeled_assertion_clause>
ag_mark> =
= dag>:
dag> = identifier
<unlabeled_assertion_clause> o= <boolean_expression>
= = <comment>
I <boolean_expression> = <expression>
<comment> = - slring
<externals> =
= <ext_decl>
<ext_dech = <external_declaration>
= <ext_decl> ; <external_declaration>
<external_declaration> = <leature_name> <formal_arguments> <type_mark>
<external_name> <language>
<language> = language <slring_constant>
<external_name> =
= name <string_constant>
<local_variables> =
= local <entity_declaration_list>
<body> = <lull_body>
: <full_body> i= <normal_body>
‘ <normal_body> i= do <compound>
<compound> =
= <comp_list>
<comp_list> = <insiruction>
= <comp_list> ; <instruction>
j <instruction> = <call
i = <assignment>
= <conditional>
= <'0q)>
= <check>
= <retry>
= <debug>
<call> = <qualified_call>
] = <unqualified_call>
; <qualified_call> = <expression> . <unqualified_call>
‘ <unqualified_call> = <fealire_name> <actuals>
* <acluals> =
= (<expression_list>)
<expression_list> =
= <exp_list>
<exp_list> = <expression>
: = <exp_list> <separator> <expression>
1‘ <separator> = .
<assignment> o= <entity> ;= <expression>
<entity> V= identifier
= Result
<expression> =
= <unq_exp_list>
<unq_exp_list> = <unqualified_expression>
= <ung_exp_list> . <unqualified_expression>
<unqualified_expression> o= <constant>
= <entity>
= <unqualified_call>
= Current
= <old_value>
= <no_change>

= <operator_expression>

<old_value> = old <expression>
<nochange> = nochange
<operatof_expression> . <unary_expression>
= <binary e ion>
= <muhiary_expression>
= <parenthesized>
<unary_expression> = <unary> <expression>
<unary> = not
= +
<binary_expression> = <expression> <binary> <expression>
<binary> = A
= /=
= <
= >
= <=
= D
= div
= mod
<multiary_expression> = <expression>
= <multiary_expression> <mulliary> <expressions> <multiary>
= +
o= /
= and
V= and then
= or
= orelse
<parenthesized> = (<expression> }
<conditional> = il <then_part_list> <else_part> end
<hen_part_list> = <then_part>
= <then_part_list> elsif <then_part>
<then_part> U= <boolean_expression> then <compound>
<else_part> =
o= else <compound>
<loop> i <initialization> <loop_invariant> <loop_variant> <exit_clause>
<loop_body> end
<initialization>

from <compound>
<loop_invariant>

invariant <assertion>

rescure <compound>
<class_invariant>

<loop_variant> =

= variant <tag_mark> <integer_expression>
<integer_expression> = <expression>
<exil_clause> = until <boolean_expression>
<loop_body> = loop <compound>
<theck> = check <assertion> end
<refry> = retry
<debug> = debug <compound> end
<postcondition> =

= ensure <assertion>
<rescue> =

invariant <assertion>

The following grammars describe computer commands.

w7

<dlist>

= <command> <dlist>
<command> = <trans>
= <Irsys>
<lIrsys> = Irsys bni=basisbnf, tok=basistok, lortran77= <file>
<rans> = trans i=(basisbnf, cray), o=(basisbnf, cray, noc)
= trans i=(basistok, cray), o=(basistok, cray, noc)
09
<clist> =
= <command> <clist>
<command> = exe mppl config <file>
= axe mppl mac <file>
= mppl
= civic i= <file> , 0=g
= Idr i= <file> , lib = basislib, x= <file>
= lib mppl x. basislb
file> = string
i12
<clist> =
= <command> <dist>
<command> = <compile>
= <build>
= <trans>
= <Irsys>
<lile> = string
<compile> = rch i= <file>
<build> = build nl = <file>, b=<file>, lib=(grafi3, lortlib,nag slatec)
<Irsys> = Irsys bni=basisbnf, tok=basistok, fortran77= <file>
<trans> = trans i=(basisbnf, cray), o=(basisbnf, cray, noc)
= trans i=(basistok, cray), o=(basistok, cray, noc)
17
<clist> =
= <command> <clisl>
<command> = exe mppl config <file>
= exe mppl mac file>
= mppl <liles> <mout>
= civic i= <file> , 0=g
= Idr i= <file> , lib = basislib, x= <file>
= lib mppl x. basislb
<files> =
= <filelist>
<filelist> = <file>
= <lile> <separator> <file>
<separator> =
<mout> =
= > <file>
<file> = string
RE:]
<dlist>

<command> <clist>

<command>

<mppl>
<oonﬁg>
<mac>
<file>
<compile>
<build>
<lrsys>
<trans>

.26
<clist>

<command>

<config>
<Mmac>
<mppl>
<files>

filelist>
<mout>
<separator>
<file>
<compile>
<build>

<lrsys>
<lrans>

.30
<clist>

<command>

<conf|g>
<mac>
<mppl>
<files>

WA W W W W W W W W W W W W W W

<mppl>

<config>

<mac>

<compile>

<build>

<trans>

<Irsys>

mppl

exe mppl config <file>

exe mppl mac <file>

string

rctt i= <file>

build nl = <file>, b=<file>, lib=(grafi3,lortlib,nag.slatec)
Irsys bnl=basisbnl, tok=basistok, fortran77= <file>
trans i=(basisbnl, cray), o=(basisbanf, cray, noc)
trans i=(basistok, cray), o=({basistok, cray, noc)

<command> <dlist>
<config>

<mac>

<mppl>

<compile>

<build>

<lrans>

<Irsys>

exe mppl config <file>
exa mppl mac <file>
mppl <files> <mout>

<filelist>

«file>

<file> <separator> <filelist>
> <file>

string

rcfl i= <file>

build nl = <file>, b=«file>, lib=(grafi3,fortlib,nag,slatec)
Irsys bnf=basisbnf, 1ok=basistok, fortran77= <file>
trans i=(basisbnf, cray), o=(basisbnl, cray, noc)

trans i=(basistok, cray), o=(basistok, cray, noc)

<command> <clist>
<config>

<mac>

<mppl>

<compile>

<load>

<build>

<trans>

<Irsys>

axe mppl config <file>
exe mppl mac <file>
mppl <files> <mout>

<flelist>

81

<filelist>
<mout>
<separalor>

<file>
<compile>

<build>
<load>

<rsys>
<trans>

133
<clist>

<command>

<config>
<mac>
<mppl>
<files>
<filelist>
<mout>

<Separalor>

file>
<compile>

<build>
<load>

<lrsys>
<trans>

<extract>

:".' .'".' -'“-' .'".' :": .'": .'".' .'".' .'".' :": :": -'".' :": -'.: :“:

<fie>
<fle> <separator> <filalisl>
> file>

string

civic i= <file> , o=g

rcft i= <file>

build ol <file> , b= <file>

build nt = <file>, bacfile>, lib=(grafl3,fortiib,nag slatec)
ldr i= <flle>, x=<file>

Irsys bni=basisbnf, tok=basistok, fortran77= <file>
trans i=(basisbnl, cray), o=(basisbnf, cray, noc)

trans i=(basistok, cray), o=(basistok, cray, noc)

<command> <dist>
<config>

<mac>

<mppl>

<compile>

<load>

<build>

<lrans>

<Irsys>

<extracl>

exe mppl config <file>
exe mppl mac <file>
mppl <files> <mout>

filelist>

file>

<file> <separator> <filelist>
> <file>

string

civic i= <file> , 0=g

rch i= <file>

build ol= <file> , b= <lile>

build nl = <file>, b=<file>, lib=(grafl3,fortlib,nag slatec)
Idr i= <file> , lib = basislib, x= <file>

Idr i= <file>, x=<file>

Irsys bni=basisbnt, tok=basistok, fortran77= <file>
trans i=(basisbnf, cray), o=(basisbnf, cray, noc)
trans j=(basistok, cray), o=(basistok, cray, noc)

lib mppl x. basislb

The following grammars describe subsets of the Basis utility Config.

.06

<config_file>
<header>

<header> <name> <title> <iter>

package

foreign

<Name>
<fille>
<iter>

AF)

<config_file>
<header>

<fame>
title>
<iter>
<rootlist>

<root>

c21

<config_file>
<header>

<name>
<title>

<iter>
<rootlist> =

<root>

<opts>

<option>

€29

<config_file>
<header>

<hame>
<title>
<iter>
<rootlist>

<root>

:"I

:II: :'I:

:II: :II:

:Il: .]I:

siring
string
integer

<header> <name> dlitle> <iter> <roollisl>
package

foreign

string

string

integer

<foot> <rootlist>
init

gen

genp

axe

exep

fin

finp

<header> <name> <litle> <iter> <rootlist> <opis>
package

foreign

string

string

integer

<root> <roollist>
init

gen

genp

exe

exep

fin

finp

<opliocn> <opls>
codename string
codefile string
cprompt string
Icprompt integer

<header> <name> <title> <iter> <rootlist> <opts>
package

foreign

string

string

integer

<foot> <rootlist>
init

gen

genp

exe

axep

fin

finp

83

<opls>

<option>

<answer>

:"1 :": :": :": :": 1“: 1“: :“: :": :u: :": :": :I: :“I

<option> <opts>
codename string
codefile string
cprompt string
lcprompt integer
firstpkg string
macfile string
probname string
userbox box string
verbose <answer>
echo <answer>
yes

no

84

PPENDIX D --In fin

Appendix D contains the input strings used in the timings of the second part of the
recognizer, REC2.

is In fin
integer name ; integer name ;
name = name ;
ba? integer name ;
inleger name ; name = name ;
name = name ; integer name ;
name = name ;
ba14 integer name ;
integer name ; name = name ;
name = name ; integer name ;
inleger name ; name = name ;
name = name ; integer name ;
name = name ;
b.a28 integer name ;
integer name ; name = name ;
name = name ; integer name ;
integer name ;
name = name ;
integer name
name = name ;
integer name ;
name = name ;
integer name ;
name = name ;
bb9 .
integer name ; integer name ;
name = name + name ; name = name + name ;
integer name ;
bbh.18 name = name + name ;
integer name ; integer name ;
name = name + name ; name = name + name ;
integer name ; integer name ;
name = name + name ; name = name + name ;
integer name ;
bb.36 name = name + name ;
integer name ; integer name ;
name = name + name ; name = name + name ;
integer name ; integer name ;
name = name + name ; name = name + name ;
integer name ; integer name
name = name + name ; name = name + name ;
integer name ;

name = hame + name ;

inleger name , name ,
name = name + name ;

integer name , name ;
name = name + name ;
integer name , name ;
name = name + name ;

integer name , name ;
name = name + name ;
integer name , name ;
name = name + name ;
integer name , name ;
name = name + name ;
inleger name , name ;
name = name + name ;

integer name , name ;
name = name + name ;
name = name * name ;

integer name , name ;
name = name + name ;
name = name * name ;
integer name , name ;
name = name + name ;
name = name ‘ name ;

integer name , name ;
name = name + name ;
name = name * name ;
integer name , name ;
name = name + name ;
name = name * name ;
integer name , name ;
name = name + name ;
name = name * name ;
integer name , name ;
name = name + name ;
name = name " name ;

integer name , name ;
name = name + name ;
integer name , name ;
name = name + name ,
integer name , name ;
name = name + name ;
inleger name , name ;
name = name + name ,
inleger name , name
name = name + name ,
inleger name , name ;
name = name + name ;
integer name , name
name = name + name ;
integer name , name
name = name + name ;

'

inleger name , name ;
name = name + name ;
name = name ‘" name ;
integer name , name |
name = name + name ;
name = name * name ;
integer name , name ;
name = name + name ;
name = name * name ;
integer name , name ;
name = name + name ;
name = name " name
integer name , name ;
name = name + hame ;
name = name " name ,
integer name , name ;
name = name + name ;
name = name * name ;
integer name , name ;
name = name + name ;
name = hame " name ;
integer name , name ,
name = name + name ;
name = name * name ;

name + hame + name + name + name + name + name + name

name

name + name

name + name + name + name
bels

name + name * name
bi?

name + name ‘ name ** name
hio

{ name + name * name ** name)
bf11

((name + name * name ** name })

Eiffel Input Strings

ea3d

class identifier
end

eal

class identifier
feature identifier : INTEGER
end

eals

class identifier

feature identifier : INTEGER ;
identifier : REAL ;
identifier : INTEGER

end

eadl

class identifier

fealure identifier : INTEGER ;
identifier : REAL ;
identifier : INTEGER ;
identifier : REAL ;
identifier : INTEGER ;
identifier : REAL ;
identifier : INTEGER

end

eb1s

dlass identifier

export identifier

inherit identifier

feature identilier : INTEGER ;

identilier is true
end
eb.30
class identifier

export identifier , identifier

inherit identifier ; identifier

feature identifier : INTEGER ;
identifier : REAL ;
identifier is * string * ;
identifier is - real

end

eb4s

class identifier

export identifier , identifier , identifer ,
identifier , identifier , identifier

inherit identifier ; identifier

{eature identifier : INTEGER ;
identifier : REAL ;
identifier is true ;
identifier is real ;
identifier is " string * ;
identifier is false

end

eb 60

dass identifier
export identifier , identifier , identifer ,
identifier , identifier , identifier ,
identifier , identifier , identifier , identifier
inherit identifier ; identifier
feature identifier : INTEGER ;
identifier : REAL ;
identifier is true ;
identifier is - real ;
identifier is " string * ;
identifier is false ;
identilier is ‘ character
end

Command {nput Strings

ia1d

kb mpp! x. basislib
exe mppl config string
exe mppl mac string
mppl

ia2s
b mppl x. basisiib

exe mppl config string
exe mppl mac string

civic i= string , lib=basislib, x= string

b1

trans i=(basisbnl,cray), o=(basisbnl,cray,noc)
trans i=(basistok,cray), o=(basistok,cray,noc)
Irsys bni=basisbnf, tok=basistok, fortran77= string

b2

trans i=(basisbnl,cray), o={basisbni,cray,noc)

trans i=(basistok,cray), o=(basistok,cray,noc)

Irsys bnf=basisbnl, tok=basistok, fortran77= string

tcht i= string

build ni=basislib, b= string , lib=(grafl3,fortlb,nag,s'atec)

b

trans i=(basisbnf cray), o=(basisbnf,cray,noc)

trans i=(basistok,cray), o=(basistok,cray,noc)

Irsys bnt=basisbnl, tok=basistok, fortran77= string

reft i= string

build nl=basislib, b= string , lib=(grafl3,forllb,nag,slatec)
exe mppl config string

exe mppl mac string

mppl

ib.34

trans i={basisbni,cray), o=(basisbnf,cray,noc)

trans i=(basistok,cray), o=(basistok,cray,noc)

lrsys bnl=basisbn, tok=basisiok, fortran77= string

tcft i= string

build nl=basislib, b= string , lib=(grafl3 fortib,nag,slatec)
exe mppl config string

exe mppl mac string

mppl string > string

ib4g

trans i=(basishnf,cray), o=(basisbnf,cray,noc)
trans i=(basistok,cray), o=(basistok,cray,noc)
Irsys bni=basisbnf, tok=basistok, fortran77= string
rcit i= string

build ni=basislib, b= string , lib=(grafl3,fortib,nag,slatec)
exe mppl config string

exe mppl mac string

mppl string > string

civic i= siring , 0=g

build ol= siring , b= string

idr i= string , x= slring

nfig | rings

cad

package
string
string
integer

cb05

package
stnng
string
integer
init

cbl1

package

string

string

integer

init gen genp exe exep fin finp

€c07

package
string
string
integer
init

codename string

